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INTRODUCTION

Soon after the publication of "Portfolio Selection" by 
Harry Markowitz (1952) that is mostly referred to as 
a seminal work for modern portfolio theory based on 
mean-variance analysis (referred herein after to as 
"MVO"), it became evident that the original method 
presented therein resulted in low-diversifi ed and un-
stable portfolios leading to overtrading and excessive 
risks. Along with increasing the number of assets in 
optimization universe these drawbacks even aggravat-
ed, and that most probably motivated Markowitz to in-
troduce initial linear constraints to the process which 
were described in his work (1956) published several 
years later and gave ground to numerous modifi cations 
and developments to the MVO process ever since.

OVERTRADING

With respect to MVO excessive trading activity is 
mainly stemmed from frequent portfolio rebalancing 

that leads to placing additional open or close market 
orders to meet new assets allocation. A major cause 
of such instability is a combination of factors com-
prising unavoidable presence of estimation errors 
within input data from one hand, and high sensitiv-
ity of MVO to even minor changes in inputs, from 
the other. Hypothetically, if input data would be free 
of such errors inside, the optimization would defi-
nitely provide effi cient or optimal portfolio compo-
sition. In reality the inputs are statistical estimates 
derived from or generated on the basis of historical 
data and bear some portion of disturbance inside. 
Michaud (1986) posited such inaccuracy results in 
overinvestment in some securities or assets and un-
derinvestment in others. For example, with two as-
sets like A and B, such as A’s true expected return is 
slightly lower than that of B, but standard deviation 
is slightly higher, and provided both assets returns 
have identical correlations with the returns for each 
of the other assets the portfolio universe, asset B is 
preferred among these two, and if the inputs are free 
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of estimation error, it dominates A. But if such errors 
resides the input data, asset A may have an estimat-
ed expected return that is higher, and an estimated 
standard deviation hat is lower than that of B. In this 
case, portfolio optimization will erroneously assign a 
higher weight for A than for B. Moreover, estimation 
error may fl uctuate around zero over time, and having 
the same true expected values for A and B in future, 
the optimizer may generate the opposite result af-
fected by changing estimation error that will lead to 
dramatic rebalancing of portfolio.

High MVO sensitivity to a minor change in the 
data for input can therefore lead to a dramatic change 
in overall portfolio composition. Thus, an update that 
bears a slight change in expected return or standard 
deviation for one asset can result in radical portfolio 
reconstruction, rebalancing weight not only for this 
particular asset, but reallocating all the assets from 
the universe under consideration. Such potential re-
composition results in excessive trading on the port-
folio deemed necessary to meet new allocations each 
time the inputs change.

Overtrading is usually associated with two main 
problems such as increased possibility of capital loss 
and excessive transaction costs. First mainly results 
from overinvestment in few assets that is evident for 
low-diversifi ed concentrated portfolios. The inputs 
for MVO are always estimates that may be quite far 
from the true values in future. Thus, if the market 
turns against the investor, low portfolio diversifi ca-
tion, i. e. allocation into fewer assets, will increase 
potential losses. In this case if the investor utilizes 
the leverage the losses are even magnifi ed and may 
exceed investor’s capital. Another issue is transaction 
costs. They are often fi xed, and in total therefore de-
pendant on the number of trades executed. Frequent 
assets re-allocation results in higher transaction 
costs that harmfully affect the return of the portfolio 
and hence overall profi tability of the investment.

The problem of excessive turnover and overinvest-
ment in fewer assets can be settled by introduction 
of specifi c constraints into MVO process. These may 
limit minimum and maximum weights for one asset 
(or class of assets) and/or preset minimum number of 
assets to be included in the portfolio to ensure proper 
level of its diversifi cation.

Transaction costs may be reduced by composition 
of more stable portfolios. For example, Lummer et 
al. (1994) proposed for this purpose to use sensitiv-
ity analysis allowing to diminish dramatic changes in 
recommended portfolio due to minor changes in in-
puts. This method implies selecting an effi cient port-
folio and then altering the MVO inputs to construct 
a set of portfolios with new inputs, and then to ex-
amine how close they are to the initial effi cient one. 

The goal is to fi nd a set of asset weights that will be 
close to effi cient proportion under several different 
sets of plausible inputs. On the other hand, expected 
benefi t from any reallocation advised by MVO can be 
assessed with respect to relevant transaction costs 
necessary for its execution.

EXPECTED RETURNS

Yet another question for MVO is that the theory im-
plies expected returns as an input. They cannot be 
known directly from the market, but only estimated 
commonly on the basis of its past data, that leads to 
unstable portfolio weights. MVO would generate a 
perfect solution if the inputs would be true expected 
returns and the variance matrix. In reality the es-
timates of expected returns mostly consist of noise 
and estimates of the variance matrixes are very 
noisy too. Scherer (2002) noted that "mean-variance 
optimization is too powerful tool for the quality of 
our data".

The main problem is to estimate expected re-
turns with suffi cient accuracy. There are several main 
methods published to resolve this issue. For example, 
Black and Litterman (1992) proposed to estimate the 
expected returns by combining Capital Asset Pricing 
Model (CAPM) equilibrium and subjective investor 
views. However, investor’s assumptions for the mar-
ket must be also specifi ed with numbers for both the 
expected returns and the uncertainty that may be 
considered as a drawback for this approach. Another 
way is the Arbitrage Pricing Theory (APT) that was 
described by Ross (1976) and was intended to model 
returns of the assets (for the discrete time) as a linear 
combination of independent factors. The APT con-
structs expected returns as statistical estimates to fi t 
historical data that in turn may also lead to unstable 
allocations.

Another empirical way of expected returns esti-
mation is to apply for consensus forecasts of profes-
sionals participating in market activity. Informational 
vendors (such as Bloomberg) provide this opportunity 
to its subscribers. However, the experience proves 
their expectations are usually drop far from true val-
ues, at least as far as single assets predicts are con-
cerned. Meanwhile, the empirical expectations with 
respect to cumulative indexes prove to be much more 
accurate. This allows to use a single index model as 
an instrument of expected return estimations using 
index estimation as the only macroeconomic param-
eter to influence particular asset expected return. 
Multifactor models are not that simplifi ed and imply 
regression analysis based on several factors such as, 
for example, indexes by various industry sectors. They 
are more detailed in assessment of expected returns 
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than single index models as consider any stock de-
pendence not on general index, but on the index of 
corresponding sector. However, multifactor models 
also provide quite rough estimations within wide 
confi dence intervals.

Following MVO routine, once input parameters 
have been estimated, it performs optimization as-
suming all inputs are certain and estimation errors 
are introduced into the process of allocation. Various 
approaches exist to stabilize the optimization results 
with respect to estimation errors, which can be dis-
tinguished in two main ways.

The fi rst approach implies to reduce the estima-
tion errors of the input parameters via econometric 
methods. For example, to reduce the impact of noise 
estimation Michaud (1998) used the resampling 
method. The idea behind it is that real returns are 
very noisy. As the optimization procedure is very 
unstable depending on small changes in inputs, the 
portfolio should be optimized over sets of similar 
return series that are randomly generated following 
some preset parameters. On average, noise should be 
evened out. Thus, starting with original return series, 
some new series are generated with small amounts 
of noise to the original series. Then MVO procedure 
runs over all series and eventually results in a set 
of different optimal portfolios composed for a same 
expected returns level. The average over all optimal 
portfolios is expected to be more stable with respect 
to errors in the input data.

The second way is to shrink directly the weights 
in portfolio using bounds, penalties for the objec-
tive function or regularization of input parameters. 
Jagannathan and Ma (2003) showed that imposing 
constraints on the mean-variance optimization can 
be interpreted as a modification of the covariance 
matrix. In particular, lower (upper) bounds decrease 
(increase) the variances of asset returns. Thus, con-
straints imposed on weights can reduce the degree 
of freedom of the optimization, and the allocation 
remains then within certain intervals. But the cor-
rection of estimation errors proved to be such dif-
ficult task that some studies were devoted to show 
that heuristic allocations perform even better than 
MVO-generated ones with respect to Sharpe ratio. 
For example, DeMiguel et al. (2009) assessed the per-
formances of 14 different portfolio models and the 
equally-weighted portfolio on different datasets and 
come to conclusion that detailed and sophisticated 
models did not produce a better optimization than 
the naïve equally-weighted portfolio.

As a result, Lindberg (2009) mentioned one more 
way to deal with the problem of expected returns es-
timation that is simply ignoring them. This method 
is stemmed from the classical 1/n strategy, which 

simply puts 1/n of the investor’s capital in each of 
n available assets. No doubt, this strategy should be 
well diversified. However, covariation between dif-
ferent assets may refrain this from being the case, 
and as it is possible to obtain rather good estimates 
of covariations between assets returns, this informa-
tion can be also used in portfolio construction. Later, 
Fernholz (2002) has proposed to consider expected 
returns as dependant on ranks. These ranks can be 
established, for example, based on the market capi-
tal distribution. Thus, rank 1 can be assigned to the 
asset with the highest market capitalization, rank 2 
to the next highest, and so far. A paper by Almgren 
and Chriss (2005) presented a portfolio optimiza-
tion method which utilized such ordering informa-
tion instead of expected returns. It uses information 
about the order of the expected returns as the MVO 
inputs instead of the very estimates. This approach 
also benefi ts from extended use of covariance infor-
mation.

NORMALITY OF RETURNS

Assets returns follow some statistical distribution 
and its form is an issue of highest importance for fi -
nancial modeling in general and MVO in particular. 
Basic assumptions on market prices behavior are re-
quired to perform a testing of asset pricing models, to 
optimize portfolios by computation of risk/return ef-
fi cient frontiers, to assess derivatives and determine 
the hedging strategy over time, as well as to measure 
and manage financial risks. However, neither eco-
nomic nor statistical theory appears to succeed in 
determination of exact type of returns distribution. 
Thus, distributions used in empirical and theoretical 
research are commonly derived from an assumption 
or estimation of data used. The overall belief adopted 
in fi nances is that this is the normal (Gaussian) dis-
tribution.

Although returns normality is the standard in fi -
nancial modeling, some alternatives have been also 
considered mainly due to evidence that the Gaussian 
distribution tends to underestimate the weight of the 
extreme returns contained in the distribution tails as 
well as the returns fallen around the mean. For ex-
ample, Longin (2005) noted that during the stock 
market crashes (such as in 2008) daily market drops 
can exceed 20% that can hardly be explained within 
normality universe. In response, several other dis-
tributions have been proposed by the scholars, who 
tried to apply them, however without evident success: 
a mixture of Gaussian distributions, stable Paretian 
distributions, Student t-distributions and the class of 
ARCH processes. Main shortcoming of all these alter-
natives is that they are not nested and their adequacy 
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therefore cannot be directly compared, for example, 
by a likelihood ratio test.

On the other hand, MVO’s intended outcome is 
to fi nd an optimal portfolio that means to maximize 
investor’s utility function. In case this utility func-
tion is not quadratic, but generally represented with 
any upward concave form, expected utility function 
should depend on the portfolio return’s values only. 
Such distributions must be the two-parameter ones, 
i. e. should be fully explained by their fi rst two mo-
ments — mean and variance, which are also implied 
to express the higher order moments, e. g. skewness 
and kurtosis. Several distributions, such as the nor-
mal, lognormal, or gamma ones satisfy this criterion 
well. However, with respect to the problem of portfo-
lio optimization, the distribution in question should 
also satisfy one more criterion. Portfolio optimization 
deals with a universe of assets (or other portfolios), 
and an investor selects which assets to include into 
portfolio. Thus, all portfolios composed by combina-
tion of individual assets must also follow some distri-
bution that can be fully explained by their means and 
variances. The distribution therefore must comply 
with a criterion that both individual assets’ returns 
distribution should depend on just their mean and 
variance, and the distribution of returns of a portfo-
lio (combination) of these assets meets the same re-
quirement. The only distribution that is suitable to 
comply with it and has fi nite variance is the normal 
Gaussian one.

As a result, the paradigm in fi nance is that MVO 
can be successfully applied only provided asset re-
turns follow the normal distribution that is deter-
mined by its two first moments, means of returns 
and their variances. The third and fourth moments of 
distribution, that are, in particular, the skewness and 
kurtosis can be also theoretically added to the utility 
to refl ect and explain a non-normality of returns, but 
it is believed that skewness is close to impossible to 
predict and the predictability of kurtosis is consider-
ably limited, either.

INTRINSIC TIME

MVO is intended to answer a very natural question: 
if the exact parameters are known, which portfolio 
maximizes the expected return for pre-specifi ed level 
of risk, or which portfolio minimizes the risk for pre-
specifi ed rate of expected return? This would be all 
the investor would need to have an optimal portfolio 
and be happy enough with it. However, among others, 
the issues described above bring some bitter stuff into 
reality. "Exact parameters" that are needed ad hoc, 
proved to be uncertain, noisy and lead the optimizer 
to unstable results with underestimated risks.

However, it becomes evident the main problem for 
all these issues is that asset returns are not normally 
distributed. This is a reason why the investor cannot 
accurately estimate expected returns, has problems 
with unstable solutions, rebalancing, and hence with 
overtrading and other bad things. Realized returns 
values refrains the investor from a clear view of true 
normal distribution that exists in the market, but is 
hidden by noise. It is widely assumed that this is the 
way things are, and for the purpose of this work, in 
particular, it is implied as a true.

Based on inherent normality of returns distribu-
tion, most of the scholars propose various approaches 
how to adjust realized market returns to suit Gauss-
ian framework by introducing new parameters that 
make the models more and more complicated. At 
some extent, it becomes evident that many of such 
sophisticated models perform worse than simplest 
naïve portfolios, and hence are discarded. But one 
point remains unchanged: the source data is taken 
from the market and then is converted into returns 
addressed for statistical manipulations.

On the other hand, it is known that the proximity 
of returns distribution to Gaussian normality is not 
stable over different time intervals and commonly in-
creases with decrease of the frequency. For example, 
the distribution of monthly returns is closer to the 
normal one than that of days, hours or minutes. The 
cause is deemed to be that the higher time intervals 
have relatively lower proportion of noise within the 
returns, but anyway it is obvious the proximity of re-
turns distribution to the normal on depends on time. 
It fl ows constantly by seconds, minutes, etc. And it 
is also obvious, but not for the market! One minute 
at the middle of trading day is not the same as one 
minute right before it is being closed. Hence, a ques-
tion: how can one consider all time spans during the 
day in the same manner? This understanding may 
explain (at least partially) the non-normality that all 
involved have got accustomed to observe.

Next question is what can be used to measure this 
difference in the same intervals of time, or to tick 
market intrinsic time clock. Volatility is usually high-
er during periods of active trading (when our time 
should go "faster") and, conversely, is lower over non-
active trading ones (when our time goes "slower"). But 
it is not so easy to estimate it independently, and its 
value represents the situation non-equally depend-
ing on volumes traded, that seems itself to be much 
more interesting to implement. Traded volumes can 
generally refl ect the level of market activity and this 
parameter is usually available as provided among 
common market data.

The bars can be now formed as based not on as-
tronomic time interval expiration (end of second, 
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minute, hour, etc.), but when the traded volume 
achieves certain pre-set value since last closed bar 
formed by the same method. It can be considered as 
market intrinsic time. Such time dimension — cumu-
lative volume bar (referred hereinafter to as "CVB"), 
will not coincide with astronomic time, but is ex-
pected to better refl ect the nature and the mood of 
the market. The CVB returns are expected to achieve 
closer proximity to normal distribution as much of 
usual noise may prove to be in fact the messed data of 
neighbor conventional (astronomic timed) bars, that 
is going to disappear in case of CVB accounting for 
market activity.

CVB approach as market intrinsic time can po-
tentially provide a better solution for all of above 
described issues. And the most interesting is that it 
may allow to use MVO it its original form, without 
complicated modifi cations and add-ons. More sta-
ble portfolios avoid overtrading, expected returns 
have lower estimation errors as returns distribution 
is close to the normal one, realized returns noise is 
diminished.

CVB PROXIMITY
TO NORMAL DISTRIBUTION

Although the data generated by the market is be-
lieved to be normally distributed, it is full of noise 
that prevents investors from gaining benefi ts associ-
ated with this normality. The proportion of such dis-
turbances, however, in overall price movements tends 
to decrease along with increasing of time intervals 
size taken for consideration. It mainly results from 
the magnitude of the market swings that are evi-
dently bigger within less frequent intervals, while the 
noise component rises slower and steadily fades out. 
The returns for yearly intervals are much closer to 
normally distributed data than the returns for minute 
frequency. Higher intervals, however, cannot often 
be useful enough for active trading and this makes 
it clear that normalization of more frequent data 

would be a matter of the highest interest for inves-
tors. As the returns derived from CVB are believed to 
be closer to normal distributed data than the regular 
ones (based on conventional astronomic time bars — 
referred hereinafter to as "conventional returns"), we 
have conducted a comparison of both types.

CVB concept posits that the bar is closed not 
with a tick of a clock as usual, but when the volume 
of trades for particular asset achieved certain preset 
value. Thus, such intrinsic time is individual for every 
asset as particular trading volumes are believed im-
possible to coincide across the market. To fulfi ll an 
experiment we have taken one minute data for a pe-
riod of one year 2013 for top ten assets of Russian 
stock market1 and have compared the proximity to 
normal distribution for the returns generated by con-
ventional bars data and CVBs.

CVB composition is performed as iterations 
for trading volumes increasing from 100,000 to 
40,000,000 with a step of 100,000. For every asset, 
one minute bars volumes from original source data 
files are added up until the sum achieves the value 
of current iteration. Then the current CVB is consid-
ered as closed, and the loop starts the same routine 
for next CVB. Any next iteration obviously produces 
less bars than the previous one as it collects more 
conventional bars to achieve increased target vol-
ume, i.  e. generates higher intervals that may itself 
bring the results closer to normality. To offset this 
infl uence and to assess the contribution of the very 
CVB concert rather than the benefi t of a scale, we also 
generate conventional bars of similar range. When 
any iteration if fi nished, it brings the fi nite number 
of CVBs generated. Dividing original source data fi le 
length by this number we can obtain the number of 
conventional bars in the interval that corresponds 
to one newly generated CVB. Then we compose new 
conventional bars dataset relevant to this particular 

1 Data is available at: http: //www. fi nam. ru/analysis/profi -
le041CA00007/, [accessed 25 February 2015].

Figure 1. Deviation of observed returns from normally distributed data.
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CVB set and compare proximity to normally distrib-
uted data with the same mean and standard deviation 
for both generated datasets.

Figure 1 presents the results for common shares 
of GAZP (Gazprom) and SBER (Sberbank). Other as-
sets examined provide similar pictures. Deviation 
from normal distribution diminishes with interval 
rise for returns based on both conventional bars and 
CVBs, but the latter present higher rate and gets 
times lower in the left part of the charts. By the end 
of iterations the conventional returns row tends to 
reach CVB ones, although CVBs still provide lower 
values within the range of observation.

As a result we may posit that CVB approach al-
lows obtaining returns that are closer to normally 
distributed than the conventional bars. This advan-
tage becomes specifi cally evident on smaller time in-
tervals, but proceeds even further, although not that 
dramatically. The application of CVB may encounter 
some complexities stemmed from the fact that every 
asset now exists in the market at its own time. But 
this problem may be solved for practical purposes of 
optimization as described below.

PORTFOLIO OPTIMIZATION USING CVB

Portfolio Theory by Harry Markowitz gives ground to 
numerous mean-variance optimizers most of which 
attempt to improve the method and to bypass its 
known drawbacks as described above. Thus, we be-
lieve it is interesting to compare portfolio optimiza-
tion by original mean-variance analysis performed on 
conventional and CVB based data, as CVB brings no 
modifi cation to optimization process itself, but just 
rearranges the data to input. For this purpose we take 
one minute interval data (also provided by Finam) for 
a period from June 2008 till end of December 2014 
for top ten Russian stocks. The start date was taken 
that as one of the participants (particularly HYDR — 
Rushydro) was listed just at the end of May 2008, and 
we have no data for processing beyond this point. The 

portfolio is intended to be rebalanced on a weekly or 
monthly basis.

Here we encounter a problem rising from indi-
vidual CVB time for each participant of our universe 
to optimize. Going common way we cannot rebal-
ance the portfolio based on CVB as the bars of all 
participating assets close differently, and there is no 
conventional uniform cut-off time. This issue can be 
solved by several means, but we use one as follows. As 
CVB is intended to arrange the data in a more natu-
ral way, there is no difference which direction such a 
composition goes to. In other words, returning back 
to the Figure 1 above, CVB construction performed 
from the last data point backward to the first one 
would produce the same result in the chart. Thus, we 
can perform portfolio optimization at any point of 
conventional time if constructing CVB row backward 
from this point.

Similar to the way we used in the experiment on 
proximity to normal distribution, at every point of 
portfolio optimization we imitate conventional row 
by CVBs one to compare with the most suitable. For 
example, if we perform monthly optimization for 
the point X of conventional data and use therefore X 
months of previous data, we adjust CVB dataset ac-
cordingly. Particularly, we derive total trading volume 
for each asset for whole the period till point X, and 
then we divide it by X — the number of months taken 
for optimization. It results in the value of average 
volume per month which becomes a target volume 
for CVB composition. It is defi nitely the easiest way 
that does not take into account, for example, global 
changes in volumes across all periods that may be 
signifi cant for Russian market and can be introduced 
by averages, but we leave it out of this research for 
the sake of simplicity. Once we have the target value 
for volume, we can construct CVBs starting from X 
point. The number of CVBs is also X that is the last 
point of both conventional and CVB datasets that are 
now equally sized and ready for input to the opti-
mizer.

Figure 2. Static Transition Maps.
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Optimization results are interesting in compari-
son of static and historical portfolio composition for 
both data samples. Figure 2 shows static transition 
maps for the date of 30 December 2014. Left map re-
fers to conventional bars based portfolios, while the 
right map — to CVBs-based ones. Each map repre-
sents a hundred portfolios sitting of effi ciency fron-
tier and sorted by return (or risk) from the lowest to 
the highest. X-axis is labeled with expected portfolio 
risk, while Y-axis represents the weights of partici-
pating stocks.

CVB-based effi cient portfolios are evidently more 
diversified and contain eight-nine assets until the 
middle of the map, while portfolios composed on the 
basis of conventional data sample consist of only four 
assets with domination of two of them in the begin-
ning — LKOH (Lukoil) and SNGS (Surgutneftegas). 
GMKN (GMK Norilskiy Nikel) dominates both maps 
most risky/profitable portfolios rightwards. Higher 
level diversification leads to lowering of portfolio 
risk that is particularly demonstrated by these charts. 

Figure 3. Back test transition maps.

Starting level of risk 0.169 for conventional bars 
based frontier is achieved by CVB-based one only in 
the right half of its map. As concentrated portfolios 
are considered as one of the known shortcomings to 
Markowitz optimization, considerably higher diversi-
fi cation of CVB-based effective portfolios may dem-
onstrate CVB’s obvious advantage over conventional 
data sampling.

Figure 3 represents transition maps of optimal 
Sharpe portfolios for the whole period from 2008 
to the end of 2014 for both data sampling methods 
with monthly rebalancing. For each time point all 
generated effi cient portfolios are compared by their 
Sharpe ratios calculated as a quotient of division of 
portfolio expected (excess) return by its expected 
risk. Then, the best portfolio is included in this map 
each time. The charts display similar peculiarity as 
the static maps. CVB-based portfolios are at least 
twice better diversifi ed over the whole period under 
consideration. The assets participating in the port-
folios in the left map are included in respective port-

Figure 4. Optimization performance.

–1
.0

   
   

  –
0.

5 
   

   
 0

.0
   

   
   

 0
.5

   
   

   
 1

.0
   

   
   

 1
.5

   
   

   
 2

.0
 

aug 30 2008     aug 01 2009      aug 07 2010      aug 06 2011      aug 04 2012        aug 03 2013        jul 26 2014 



14

Review of Business and Economics Studies   Volume 3, Number 2, 2015

folios represented in the right chart, but also added 
with some other assets ignored by conventional data 
based optimization.

Back test conducted for both types of data sam-
pling methods also allows comparing their real per-
formance in the market. The results are demonstrated 
in the Figure 4.

Both sets of portfolios outperform the benchmark 
that is calculated as cumulative return of assets mar-
ket capitalization. CVB-based portfolios perform bet-
ter than conventional data based ones in the begin-
ning, but depreciate in the second part of the graph. 
This may result from initial assumption that target 
volumes for CVB step is constant over the period, 
or that CVB works better in the bull market that has 
taken place in Russia from second half of 2008 till the 
mid of 2011.

CONCLUSION

CVB approach to data sampling proved to have a real 
effect on portfolios composition using even pure, 
standard tools of optimization. It brings more diver-
sifi ed portfolios and can provide results outperform-
ing that of generated on the basis of conventionally 
sampled data. As CVB approach is not an optimiza-
tion tool itself, it can be easily introduced to any of 
existing optimization techniques to enhance their 
positive features.

Based on experiments to approach normally dis-
tributed series, it is believed that CVB can demon-
strate better performance on smaller intervals. Thus, 
there are two main directions to evolve the research. 
First, to apply CVB to more frequent rebalancing, for 
example, on daily or even lower basis, where common 
portfolio optimization is not traditionally used. And 
the second direction is to try CVB on more developed 
and vigorous markets such as that of USA. Both these 
developments will allow tuning the method and im-
proving its performance for future application.
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