Электронная библиотека Финансового университета

     

Детальная информация

Materials research foundations ;.
Industrial applications of green solvents. Volume 1 /. — v. 50. / edited by Inamuddin, [and 2 others]. — 1 online resource. — (Materials research foundations). — 2.1.7 Mannich-type reactions. — <URL:http://elib.fa.ru/ebsco/2145721.pdf>.

Дата создания записи: 13.07.2019

Тематика: Green chemistry.; Solvents.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

The book focuses on new applications of green solvents (water, ionic liquids, supercritical carbon dioxide, terpenes). Keywords: Green Chemistry, Pollution Control, Hazardous Waste, Environmental Pollution, Green Solvents, Ionic Liquids, Supercritical Carbon Dioxide, Terpenes, Chemical Synthesis, Lipase-catalyzed Reactions, Organic Synthesis, Esterification, Gas Separation Membranes, Environment-friendly Products, Low Energy Requirement Processes, Alternatives to Hazardous Substances, Spiroheterocycles in Water, Sustainable Organic Synthesis, Chemical Industry, Pharmaceutical Industry, Paint I.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Plant Cell Culture Strategies for the Production of Terpenes as Green Solvents
    • 1. Introduction
    • 2.1 Essential oil as a source of green solvents
    • 2.2 Green solvents as an alternative to chemical solvents
    • 2.3 Essential oil yield and limiting factors for production in wild grown plants
    • 3.1 Biotechnological production of terpenes
    • 3.2 Approaches to improve the yield of terpenes produced by plant cell culture technology
    • 3.3 Terpenes in callus and cell cultures
    • 3.4 Terpenes in shoot cultures
    • 3.5 Terpenes in hairy roots
    • 4.1 Genetic engineering of plants for enhanced terpenoid biosynthesis
    • Conclusion
    • References
  • 2
    • Ionic Liquids as a Green Solvent for Lipase-Catalyzed Reactions
    • 1. Introduction
    • 2. Lipases: An overview
    • 3. ILs in enzymatic reactions: Advantages and merits
    • 4. ILs properties and featured characteristics in lipase stabilization
      • 4.1 Stabilization and activation of lipases in ionic liquids (ILs)
      • 4.2 Methods of stabilization of lipases in ILs
    • 5. Factors influencing IL-lipase reactions
      • 5.1 IL composition
      • 5.2 IL polarity
      • 5.3 IL viscosity
      • 5.4 pH
      • 5.5 Water content
      • 5.6 Temperature and thermal stability
      • 5.7 Selectivity
      • 5.8 Product purification
    • 6. Lipases and ILs in lipids reactions
      • 6.1 IL-lipase-catalyzed biodiesel synthesis
      • 6.2 Synthesis of esters and other products in ionic liquids
      • 6.3 Ionic liquids: The large-scale promise
    • 7. Recyclability of ILs and lipase
    • 8. Kinetics parameters of lipases in ILs
    • 9. Limitations and concerns over ILs
    • 10. The outlook for ILs in industrial applications
    • References
  • 3
    • Water in Organic Synthesis as a Green Solvent
    • 1. Introduction
      • 1.1 The development of green chemistry
      • 1.2 Green chemistry and its requirements in organic synthesis
      • 1.3 Green and alternative solvents in organic synthesis
      • 1.4 Water as a green solvent in organic synthesis
    • 2. On water reactions and concept of micellar catalysis in organic synthesis
      • 2.1 On water reactions
      • 2.2 Micellar catalysis
    • 3. Enhancement in rate and yield of organic reactions
    • 4. Improvement in chemo-, enantio-, regio- and stereoselectivity
    • 5. Towards milder reaction conditions and catalyst-free synthesis
    • 6. Simplification in the course of workup
    • 7. Enhancement in recycling the catalyst
    • Conclusion
    • References
  • 4
    • Industrial Application of Ionic Liquids in the Paint Industry
    • 1. Introduction
    • 2. A short history of paints
    • 3. Traditional solvents in the paint industry
    • 4. Alternatives to the traditional solvents, ionic liquid (IL)
      • 4.1 Cations for the ILs
      • 4.2 Anions for the ILs
    • 5. Ionic liquids in the paint industry
    • Conclusion
    • References
  • 5
    • An Overview of Green Solvents in Sustainable Organic Synthesis
    • 1. Introduction
    • 2. Green solvents
      • 2.1 Water
      • 2.1.1 Oxidations
      • 2.1.2 Dehydrogenation
      • 2.1.3 Allylations
      • 2.1.4 Coupling reactions
      • 2.1.5 Heck reaction
      • 2.1.6 Wittig reaction
      • 2.1.7 Mannich-type reactions
      • 2.1.8 Intramolecular Diels-Alder reaction
      • 2.2 Supercritical fluids
      • 2.2.1 Carbon dioxide
      • 2.2.1.1 Applications of supercritical CO2
      • 2.2.1.2 Chemical reactions of CO2
      • 2.3 Ionic liquids
      • 2.3.1 General properties and nature of ILqs
      • 2.3.2 Application of ILqs
      • 2.3.3 Ionic liquids in organic synthesis
    • Conclusion
    • Acknowledgment
    • References
  • 6
    • Application of Supercritical Carbon Dioxide in the Leather Industry
    • 1. Introduction
      • 1.1 What is supercritical carbon dioxide?
      • 1.2 Leather processing
      • 1.2.1 Stages for preparation
      • 1.2.2 Tanning
      • 1.2.3 Crusting
    • 2. The journey of CO2 to supercritical carbon dioxide
      • 2.1 Environmental challenges of leather production
      • 2.1.1 Ammonium Nitrogen (NH3-N)
      • 2.1.2 Chromium (Cr)
    • 3. Applications of supercritical carbon dioxide
      • 3.1 Supercritical carbon dioxide in the pharmaceutical industry
      • 3.2 Supercritical carbon dioxide in the leather industry
      • 3.2.1 Degreasing
      • 3.2.2 Fiber separation
      • 3.2.3 Deliming
      • 3.2.4 Chrome tanning
      • 3.2.5 Dyeing
      • 3.2.6 Fatliquoring
      • 3.2.7 Finishing
    • Conclusion
    • References
  • 7
    • Green Solvents in Chemical Reactions
    • 1. Introduction
    • 2. Types of green solvents used
      • 2.1 Water
      • 2.1.1 MCRs in water based on Knoevenagel condensation
      • 2.2.2 MCRs based on activation of carbonyl group with water
      • 2.2.3 MCRs in water based on imine formation
      • 2.2.4 Synthesis of dithiocarbamate through MCRs in water
      • 2.2.5 Isocyanide-based MCRs in water
    • 3. MCRs in water based on transitional metal catalysis
    • 4. Fluorous solvents (perfluorinated liquids)
    • 5. Supercritical fluids
      • 5.1 Supercritical water (scWater)
      • 5.2 Supercritical carbon dioxide (scCO2)
    • 6. Ionic liquids (ILs)
      • 6.1 MCRs in ionic liquids
    • 7. Ephemeral solvents or deep eutectic solvents
      • 7.1 Natural DESs
      • 7.2 Hydrotropes
    • 8 Switchable solvents
    • 9. Organic Carbonates
    • 10. Biosolvents
    • 11. Polyethylene glycol polymers (PEGs)
    • 12. Use of green solvents in nanomaterials synthesis
    • 13. Green solvents in analytical chemistry
    • Conclusion
    • References
  • 8
    • Supercritical Carbon Dioxide in Esterification Reactions
    • 1. Introduction
      • 1.1. The concept of supercritical fluid (SCF)
      • 1.2 What is a supercritical fluid?
      • 1.3 Esterification reaction and its applications
      • 1.4 Experimental setup for esterification reaction in supercritical CO2
    • 2. Esterification reactions in ScCO2
      • 2.1 Enzymatic esterification reactions
      • 2.2 Mechanism of esterification reactions
      • 2.3 Effect of size of the carbon chain of alcohol in the esterification reactions
      • 2.4 Influence of water on the esterification reaction
      • 2.5 Phase transfer model of palmitin
      • 2.6 The influence of pressure and temperature on the phase behaviour system
      • 2.7 Comparison between the presence and absence of biocatalyst
      • 2.8 Comparison of activity between ScCO2 and organic solvents
    • Summary
    • References
  • 9
    • Multicomponent Synthesis of Biologically Relevant Spiroheterocycles in Water
    • 1. Introduction
    • 2. Synthesis of N-containing spiroheterocycles
      • 2.1 Synthesis of spiro[pyrimido[4,5-b]quinoline-5,5-pyrrolo[2,3-d]pyrimidine]-pentaone derivatives
      • 2.2 Synthesis of spirooxindole-containing fused 1,4-dihydropyridine derivatives
      • 2.3 Synthesis of spiro[indoline-3,5′-pyrimido[4,5-b]quinoline] derivatives
      • 2.4 Synthesis of spiro[indoline-3,4'-pyrazolo[3,4-b]pyridine]-2,3' (7'H)-dione
      • 2.5 Synthesis of spiro[dihydropyridine-oxindole] derivatives
      • 2.6 Synthesis of spirooxindolyl-dihydroquinazolinone derivatives
      • 2.7 Synthesis of spiro[acridine-9,3′-indole]-2′,4,4′(1′H,5′H,10H)-trione derivatives
      • 2.8 Synthesis of 6-spiro-substituted pyrido[2,3-d]pyrimidines
      • 2.9 Synthesis of pyrimidine fused spiro-benzoquinolines
      • 2.10 Synthesis of spirooxindolyl fused pyrazolopyridine derivatives
      • 2.11 Synthesis of pyrazolopyridinyl spirooxindoles
    • 3. Synthesis of O-containing spiroheterocycles
      • 3.1 Synthesis of spirochromenes
    • 4. Synthesis of N, O-containing spiroheterocycles
      • 4.1 Synthesis of spironaphthopyrano[2,3-d]pyrimidine derivatives
      • 4.2 Synthesis of 2-amino-3-cyano-4-indolinon-spiro[pyran or pyran-annulated] heterocycles
      • 4.3 Synthesis of spiro-fused pyrano[2,3-c]pyrazoles
      • 4.4 Synthesis of spiro-fused benzo[b]furo[3,4-e][1,4]diazepines
      • 4.5 Synthesis of spiro{[1,3]dioxanopyridine}-4,6-dione derivatives
    • 5. Synthesis of N, S-containing spiroheterocycles
      • 5.1 Synthesis of spiro[indole-pyrido[3,2-e]thiazine] derivatives
      • 5.2 Synthesis of spiro[indole-3,4′-pyrazolo[3,4-e][1,4]thiazepine] derivatives
      • 5.3 Synthesis of benzothiazole fused spiroheterocyces
      • 5.4 Synthesis of spiro[indoline-3,2′-thiazolidinone] derivatives
      • 5.5 Synthesis of spiro{pyrido[2,1-b]benzothiazole-3,3′-indoline derivatives
    • Conclusion
    • Acknowledgments
    • References
  • 10
    • Application of Ionic Liquids in Gas Separation Membranes
    • 1. Introduction
      • What are ionic liquids (ILs)?
      • Types of ionic liquids
    • 2. Gas separation through ionic liquid polymer membranes
      • Rubbery ionic liquid polymeric membranes
      • Glassy ionic liquid polymeric membranes
      • Block copolymer based ILPMs
    • 3. Gas separation in supported ionic liquid membranes (SILMs)
    • 4. Gas separation in ionic liquid mixed matrix membranes (ILMMMs)
    • 5. Future recommendations in research and development
    • Conclusion
    • Acknowledgment
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика