Электронная библиотека Финансового университета

     

Детальная информация

So, Anthony. The data science workshop: a new, interactive approach to learning data science / Anthony So [and four others]. — First edition. — 1 online resource (1 volume) : illustrations — <URL:http://elib.fa.ru/ebsco/2363875.pdf>.

Дата создания записи: 20.07.2020

Тематика: Machine learning.; Electronic data processing.; Statistics — Data processing.; Python (Computer program language); Application software — Development.; Application software — Development; Electronic data processing; Machine learning; Python (Computer program language); Statistics — Data processing

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Cut through the noise and get real results with a step-by-step approach to data science.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Cover
  • FM
  • Copyright
  • Table of Contents
  • Preface
  • Chapter 1: Introduction to Data Science in Python
    • Introduction
    • Application of Data Science
      • What Is Machine Learning?
        • Supervised Learning
        • Unsupervised Learning
        • Reinforcement Learning
    • Overview of Python
      • Types of Variable
        • Numeric Variables
        • Text Variables
        • Python List
        • Python Dictionary
      • Exercise 1.01: Creating a Dictionary That Will Contain Machine Learning Algorithms
    • Python for Data Science
      • The pandas Package
        • DataFrame and Series
        • CSV Files
        • Excel Spreadsheets
        • JSON
      • Exercise 1.02: Loading Data of Different Formats into a pandas DataFrame
    • Scikit-Learn
      • What Is a Model?
        • Model Hyperparameters
        • The sklearn API
      • Exercise 1.03: Predicting Breast Cancer from a Dataset Using sklearn
      • Activity 1.01: Train a Spam Detector Algorithm
    • Summary
  • Chapter 2: Regression
    • Introduction
    • Simple Linear Regression
      • The Method of Least Squares
    • Multiple Linear Regression
      • Estimating the Regression Coefficients (β0, β1, β2 and β3)
      • Logarithmic Transformations of Variables
      • Correlation Matrices
    • Conducting Regression Analysis Using Python
      • Exercise 2.01: Loading and Preparing the Data for Analysis
      • The Correlation Coefficient
      • Exercise 2.02: Graphical Investigation of Linear Relationships Using Python
      • Exercise 2.03: Examining a Possible Log-Linear Relationship Using Python
      • The Statsmodels formula API
      • Exercise 2.04: Fitting a Simple Linear Regression Model Using the Statsmodels formula API
      • Analyzing the Model Summary
      • The Model Formula Language
      • Intercept Handling
      • Activity 2.01: Fitting a Log-Linear Model Using the Statsmodels formula API
    • Multiple Regression Analysis
      • Exercise 2.05: Fitting a Multiple Linear Regression Model Using the Statsmodels formula API
    • Assumptions of Regression Analysis
      • Activity 2.02: Fitting a Multiple Log-Linear Regression Model
    • Explaining the Results of Regression Analysis
      • Regression Analysis Checks and Balances
      • The F-test
      • The t-test
    • Summary
  • Chapter 3: Binary Classification
    • Introduction
    • Understanding the Business Context
      • Business Discovery
      • Exercise 3.01: Loading and Exploring the Data from the Dataset
      • Testing Business Hypotheses Using Exploratory Data Analysis
      • Visualization for Exploratory Data Analysis
      • Exercise 3.02: Business Hypothesis Testing for Age versus Propensity for a Term Loan
      • Intuitions from the Exploratory Analysis
      • Activity 3.01: Business Hypothesis Testing to Find Employment Status versus Propensity for Term Deposits
    • Feature Engineering
      • Business-Driven Feature Engineering
      • Exercise 3.03: Feature Engineering – Exploration of Individual Features
      • Exercise 3.04: Feature Engineering – Creating New Features from Existing Ones
    • Data-Driven Feature Engineering
      • A Quick Peek at Data Types and a Descriptive Summary
    • Correlation Matrix and Visualization
      • Exercise 3.05: Finding the Correlation in Data to Generate a Correlation Plot Using Bank Data
      • Skewness of Data
      • Histograms
      • Density Plots
      • Other Feature Engineering Methods
      • Summarizing Feature Engineering
      • Building a Binary Classification Model Using the Logistic Regression Function
      • Logistic Regression Demystified
      • Metrics for Evaluating Model Performance
      • Confusion Matrix
      • Accuracy
      • Classification Report
      • Data Preprocessing
      • Exercise 3.06: A Logistic Regression Model for Predicting the Propensity of Term Deposit Purchases in a Bank
      • Activity 3.02: Model Iteration 2 – Logistic Regression Model with Feature Engineered Variables
      • Next Steps
    • Summary
  • Chapter 4: Multiclass Classification with RandomForest
    • Introduction
    • Training a Random Forest Classifier
    • Evaluating the Model's Performance
      • Exercise 4.01: Building a Model for Classifying Animal Type and Assessing Its Performance
      • Number of Trees Estimator
      • Exercise 4.02: Tuning n_estimators to Reduce Overfitting
    • Maximum Depth
      • Exercise 4.03: Tuning max_depth to Reduce Overfitting
    • Minimum Sample in Leaf
      • Exercise 4.04: Tuning min_samples_leaf
    • Maximum Features
      • Exercise 4.05: Tuning max_features
      • Activity 4.01: Train a Random Forest Classifier on the ISOLET Dataset
    • Summary
  • Chapter 5: Performing Your First Cluster Analysis
    • Introduction
    • Clustering with k-means
      • Exercise 5.01: Performing Your First Clustering Analysis on the ATO Dataset
    • Interpreting k-means Results
      • Exercise 5.02: Clustering Australian Postcodes by Business Income and Expenses
    • Choosing the Number of Clusters
      • Exercise 5.03: Finding the Optimal Number of Clusters
    • Initializing Clusters
      • Exercise 5.04: Using Different Initialization Parameters to Achieve a Suitable Outcome
    • Calculating the Distance to the Centroid
      • Exercise 5.05: Finding the Closest Centroids in Our Dataset
    • Standardizing Data
      • Exercise 5.06: Standardizing the Data from Our Dataset
      • Activity 5.01: Perform Customer Segmentation Analysis in a Bank Using k-means
    • Summary
  • Chapter 6: How to Assess Performance
    • Introduction
    • Splitting Data
      • Exercise 6.01: Importing and Splitting Data
    • Assessing Model Performance for Regression Models
      • Data Structures – Vectors and Matrices
        • Scalars
        • Vectors
        • Matrices
      • R2 Score
      • Exercise 6.02: Computing the R2 Score of a Linear Regression Model
      • Mean Absolute Error
      • Exercise 6.03: Computing the MAE of a Model
      • Exercise 6.04: Computing the Mean Absolute Error of a Second Model
        • Other Evaluation Metrics
    • Assessing Model Performance for Classification Models
      • Exercise 6.05: Creating a Classification Model for Computing Evaluation Metrics
    • The Confusion Matrix
      • Exercise 6.06: Generating a Confusion Matrix for the Classification Model
        • More on the Confusion Matrix
      • Precision
      • Exercise 6.07: Computing Precision for the Classification Model
      • Recall
      • Exercise 6.08: Computing Recall for the Classification Model
      • F1 Score
      • Exercise 6.09: Computing the F1 Score for the Classification Model
      • Accuracy
      • Exercise 6.10: Computing Model Accuracy for the Classification Model
      • Logarithmic Loss
      • Exercise 6.11: Computing the Log Loss for the Classification Model
    • Receiver Operating Characteristic Curve
      • Exercise 6.12: Computing and Plotting ROC Curve for a Binary Classification Problem
    • Area Under the ROC Curve
      • Exercise 6.13: Computing the ROC AUC for the Caesarian Dataset
    • Saving and Loading Models
      • Exercise 6.14: Saving and Loading a Model
      • Activity 6.01: Train Three Different Models and Use Evaluation Metrics to Pick the Best Performing Model
    • Summary
  • Chapter 7: The Generalization of Machine Learning Models
    • Introduction
    • Overfitting
      • Training on Too Many Features
      • Training for Too Long
    • Underfitting
    • Data
      • The Ratio for Dataset Splits
      • Creating Dataset Splits
      • Exercise 7.01: Importing and Splitting Data
    • Random State
      • Exercise 7.02: Setting a Random State When Splitting Data
    • Cross-Validation
      • KFold
      • Exercise 7.03: Creating a Five-Fold Cross-Validation Dataset
      • Exercise 7.04: Creating a Five-Fold Cross-Validation Dataset Using a Loop for Calls
    • cross_val_score
      • Exercise 7.05: Getting the Scores from Five-Fold Cross-Validation
      • Understanding Estimators That Implement CV
    • LogisticRegressionCV
      • Exercise 7.06: Training a Logistic Regression Model Using Cross-Validation
    • Hyperparameter Tuning with GridSearchCV
      • Decision Trees
      • Exercise 7.07: Using Grid Search with Cross-Validation to Find the Best Parameters for a Model
    • Hyperparameter Tuning with RandomizedSearchCV
      • Exercise 7.08: Using Randomized Search for Hyperparameter Tuning
    • Model Regularization with Lasso Regression
      • Exercise 7.09: Fixing Model Overfitting Using Lasso Regression
    • Ridge Regression
      • Exercise 7.10: Fixing Model Overfitting Using Ridge Regression
      • Activity 7.01: Find an Optimal Model for Predicting the Critical Temperatures of Superconductors
    • Summary
  • Chapter 8: Hyperparameter Tuning
    • Introduction
    • What Are Hyperparameters?
      • Difference between Hyperparameters and Statistical Model Parameters
      • Setting Hyperparameters
      • A Note on Defaults
    • Finding the Best Hyperparameterization
      • Exercise 8.01: Manual Hyperparameter Tuning for a k-NN Classifier
      • Advantages and Disadvantages of a Manual Search
    • Tuning Using Grid Search
      • Simple Demonstration of the Grid Search Strategy
    • GridSearchCV
      • Tuning using GridSearchCV
        • Support Vector Machine (SVM) Classifiers
      • Exercise 8.02: Grid Search Hyperparameter Tuning for an SVM
      • Advantages and Disadvantages of Grid Search
    • Random Search
      • Random Variables and Their Distributions
      • Simple Demonstration of the Random Search Process
      • Tuning Using RandomizedSearchCV
      • Exercise 8.03: Random Search Hyperparameter Tuning for a Random Forest Classifier
      • Advantages and Disadvantages of a Random Search
      • Activity 8.01: Is the Mushroom Poisonous?
    • Summary
  • Chapter 9: Interpreting a Machine Learning Model
    • Introduction
    • Linear Model Coefficients
      • Exercise 9.01: Extracting the Linear Regression Coefficient
    • RandomForest Variable Importance
      • Exercise 9.02: Extracting RandomForest Feature Importance
    • Variable Importance via Permutation
      • Exercise 9.03: Extracting Feature Importance via Permutation
    • Partial Dependence Plots
      • Exercise 9.04: Plotting Partial Dependence
    • Local Interpretation with LIME
      • Exercise 9.05: Local Interpretation with LIME
      • Activity 9.01: Train and Analyze a Network Intrusion Detection Model
    • Summary
  • Chapter 10: Analyzing a Dataset
    • Introduction
    • Exploring Your Data
    • Analyzing Your Dataset
      • Exercise 10.01: Exploring the Ames Housing Dataset with Descriptive Statistics
    • Analyzing the Content of a Categorical Variable
      • Exercise 10.02: Analyzing the Categorical Variables from the Ames Housing Dataset
    • Summarizing Numerical Variables
      • Exercise 10.03: Analyzing Numerical Variables from the Ames Housing Dataset
    • Visualizing Your Data
      • How to use the Altair API
      • Histogram for Numerical Variables
      • Bar Chart for Categorical Variables
    • Boxplots
      • Exercise 10.04: Visualizing the Ames Housing Dataset with Altair
      • Activity 10.01: Analyzing Churn Data Using Visual Data Analysis Techniques
    • Summary
  • Chapter 11: Data Preparation
    • Introduction
    • Handling Row Duplication
      • Exercise 11.01: Handling Duplicates in a Breast Cancer Dataset
    • Converting Data Types
      • Exercise 11.02: Converting Data Types for the Ames Housing Dataset
    • Handling Incorrect Values
      • Exercise 11.03: Fixing Incorrect Values in the State Column
    • Handling Missing Values
      • Exercise 11.04: Fixing Missing Values for the Horse Colic Dataset
      • Activity 11.01: Preparing the Speed Dating Dataset
    • Summary
  • Chapter 12: Feature Engineering
    • Introduction
    • Merging Datasets
      • The left join
        • The right join
      • Exercise 12.01: Merging the ATO Dataset with the Postcode Data
    • Binning Variables
      • Exercise 12.02: Binning the YearBuilt variable from the AMES Housing dataset
    • Manipulating Dates
      • Exercise 12.03: Date Manipulation on Financial Services Consumer Complaints
    • Performing Data Aggregation
      • Exercise 12.04: Feature Engineering Using Data Aggregation on the AMES Housing Dataset
      • Activity 12.01: Feature Engineering on a Financial Dataset
    • Summary
  • Chapter 13: Imbalanced Datasets
    • Introduction
    • Understanding the Business Context
      • Exercise 13.01: Benchmarking the Logistic Regression Model on the Dataset
      • Analysis of the Result
    • Challenges of Imbalanced Datasets
    • Strategies for Dealing with Imbalanced Datasets
      • Collecting More Data
      • Resampling Data
      • Exercise 13.02: Implementing Random Undersampling and Classification on Our Banking Dataset to Find the Optimal Result
      • Analysis
    • Generating Synthetic Samples
      • Implementation of SMOTE and MSMOTE
      • Exercise 13.03: Implementing SMOTE on Our Banking Dataset to Find the Optimal Result
      • Exercise 13.04: Implementing MSMOTE on Our Banking Dataset to Find the Optimal Result
      • Applying Balancing Techniques on a Telecom Dataset
      • Activity 13.01: Finding the Best Balancing Technique by Fitting a Classifier on the Telecom Churn Dataset
    • Summary
  • Chapter 14: Dimensionality Reduction
    • Introduction
      • Business Context
      • Exercise 14.01: Loading and Cleaning the Dataset
    • Creating a High-Dimensional Dataset
      • Activity 14.01: Fitting a Logistic Regression Model on a High‑Dimensional Dataset
    • Strategies for Addressing High-Dimensional Datasets
      • Backward Feature Elimination (Recursive Feature Elimination)
      • Exercise 14.02: Dimensionality Reduction Using Backward Feature Elimination
      • Forward Feature Selection
      • Exercise 14.03: Dimensionality Reduction Using Forward Feature Selection
      • Principal Component Analysis (PCA)
      • Exercise 14.04: Dimensionality Reduction Using PCA
      • Independent Component Analysis (ICA)
      • Exercise 14.05: Dimensionality Reduction Using Independent Component Analysis
      • Factor Analysis
      • Exercise 14.06: Dimensionality Reduction Using Factor Analysis
    • Comparing Different Dimensionality Reduction Techniques
      • Activity 14.02: Comparison of Dimensionality Reduction Techniques on the Enhanced Ads Dataset
    • Summary
  • Chapter 15: Ensemble Learning
    • Introduction
    • Ensemble Learning
      • Variance
      • Bias
      • Business Context
      • Exercise 15.01: Loading, Exploring, and Cleaning the Data
      • Activity 15.01: Fitting a Logistic Regression Model on Credit Card Data
    • Simple Methods for Ensemble Learning
      • Averaging
      • Exercise 15.02: Ensemble Model Using the Averaging Technique
      • Weighted Averaging
      • Exercise 15.03: Ensemble Model Using the Weighted Averaging Technique
        • Iteration 2 with Different Weights
        • Max Voting
      • Exercise 15.04: Ensemble Model Using Max Voting
      • Advanced Techniques for Ensemble Learning
        • Bagging
      • Exercise 15.05: Ensemble Learning Using Bagging
      • Boosting
      • Exercise 15.06: Ensemble Learning Using Boosting
      • Stacking
      • Exercise 15.07: Ensemble Learning Using Stacking
      • Activity 15.02: Comparison of Advanced Ensemble Techniques
    • Summary
  • Chapter 16: Machine Learning Pipelines
    • Introduction
    • Pipelines
      • Business Context
      • Exercise 16.01: Preparing the Dataset to Implement Pipelines
    • Automating ML Workflows Using Pipeline
      • Automating Data Preprocessing Using Pipelines
      • Exercise 16.02: Applying Pipelines for Feature Extraction to the Dataset
    • ML Pipeline with Processing and Dimensionality Reduction
      • Exercise 16.03: Adding Dimensionality Reduction to the Feature Extraction Pipeline
    • ML Pipeline for Modeling and Prediction
      • Exercise 16.04: Modeling and Predictions Using ML Pipelines
    • ML Pipeline for Spot-Checking Multiple Models
      • Exercise 16.05: Spot-Checking Models Using ML Pipelines
    • ML Pipelines for Identifying the Best Parameters for a Model
      • Cross-Validation
      • Grid Search
      • Exercise 16.06: Grid Search and Cross-Validation with ML Pipelines
    • Applying Pipelines to a Dataset
      • Activity 16.01: Complete ML Workflow in a Pipeline
    • Summary
  • Chapter 17: Automated Feature Engineering
    • Introduction
    • Feature Engineering
      • Automating Feature Engineering Using Feature Tools
      • Business Context
      • Domain Story for the Problem Statement
      • Featuretools – Creating Entities and Relationships
      • Exercise 17.01: Defining Entities and Establishing Relationships
      • Feature Engineering – Basic Operations
      • Featuretools – Automated Feature Engineering
      • Exercise 17.02: Creating New Features Using Deep Feature Synthesis
      • Exercise 17.03: Classification Model after Automated Feature Generation
    • Featuretools on a New Dataset
      • Activity 17.01: Building a Classification Model with Features that have been Generated Using Featuretools
    • Summary
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика