Электронная библиотека Финансового университета

     

Детальная информация

The handbook of microbial bioresources / edited by Vijai Kumar Gupta (National University of Ireland Galway, Ireland), Gauri Dutt Sharma (Bilaspur University, India), Maria G. Tuohy (National University of Ireland Galway, Ireland), Rajeeva Gaur (Dr Ram Manohar Lohia Avadh University, India). — 1 online resource (xix, 700 pages) : illustrations (some color), charts. — Title from PDF title page (viewed July 8, 2016). — <URL:http://elib.fa.ru/ebsco/2415876.pdf>.

Дата создания записи: 08.07.2016

Тематика: Microbiology.; Molecular biology.; Microbiological Phenomena; Microbiological Techniques; Molecular Biology — methods; Microbiology; Molecular Biology; Microbiologie.; Biologie moléculaire.; microbiology.; molecular biology.; Anticancer properties.; Bacterial diseases.; Biofertilizers.; Biofuels.; Biological control.; Biological control agents.; Bioremediation.; Biotechnology.; Cosmetics.; Endophytes.; Enzyme activity.; Enzymes.; Feeds.; Foods.; Giardiasis.; Infections.; Listeriosis.; Mycorrhizal fungi.; Natural enemies.; Parasites.; Parasitoses.; Plant pests.; Prebiotics.; Probiotics.; Protozoal infections.; Microbiology.; Molecular biology.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

This book, inclusive of 39 chapters, provides a detailed discussion on the biotechnological methods and processes, as well as the industrial applications, of various microbial resources. Current use of these microbial resources in the medical (anti-cancer substances from bacteria), agricultural (i.e., mycorrhizal fungi, biofertilizers, insect pest control), food (i.e., probiotics, prebiotics), feed, cosmetic, biofuel, and bioremediation industries are highlighted, giving researchers in these various fields a valuable resource for the latest developments in microbial bioresources.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • The Handbook of Microbial Bioresources
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Foreword
  • 1: Microbial Resources for Improved Crop Productivity
    • Abstract
    • 1.1 Introduction
    • 1.2 Microbes Promote Plant Growth and Nutrient Uptake
    • 1.3 Microbes Produce Plant Growth-regulating Substances
    • 1.4 Microbes Reinforce Plant Immunity
    • 1.5 Microbes Provide Protection from Abiotic Stress
    • 1.6 Current Challenges for Agricultural Applications of Microbes
    • Acknowledgements
    • References
  • 2: The Contributions of Mycorrhizal Fungi
    • Abstract
    • 2.1 Introduction
    • 2.2 Soil Amendments
    • 2.3 Morphology and Composition of Historical Black-C
    • 2.4 Mycorrhizal Plants and Biochar
    • 2.5 Mycorrhizal Plants and Compost
    • 2.6 Conclusion
    • Acknowledgements
    • Note
    • References
  • 3: Trichoderma: Utilization for Agriculture Management and Biotechnology
    • Abstract
    • 3.1 Introduction
    • 3.2 Biology of Genus Trichoderma
    • 3.2.1 Morphological characters of Trichoderma spp.
    • 3.3 Trichoderma as Biocontrol Agents
      • 3.3.1 Type of biocontrol mechanism
        • Antibiosis
        • Mycoparasitism
        • Competition
        • Fungistasis
    • 3.4 Trichoderma as a Source Organism for Useful Genes
      • 3.4.1 Progress in identification of Trichoderma genes
    • 3.5 Commercial Utilization
      • 3.5.1 Trichoderma in the textile industry
      • 3.5.2 Trichoderma in the pulp and paper industry
      • 3.5.3 Trichoderma in the food and livestock feed industries
      • 3.5.4 Use of Trichoderma in agriculture and impacts on plants
        • Colonization of the plant root
        • Trichoderma as a biofertilizer
        • Trichoderma advances plant development
        • Trichoderma induces plant resistance to pathogens
    • References
  • 4: The Role of Bacillus Bacterium in Formation of Plant Defence: Mechanism and Reaction
    • Abstract
    • 4.1 Bacilli Preparations in Plant Growing and Defence
      • 4.1.1 Biofungicides: a short classification and general biological activity
      • 4.1.2 Bacilli biofungicides and their activity
    • 4.2 Mechanisms of Plant Disease Resistance, Invoked by PGPR of Bacillus spp.
      • 4.2.1 Synthesis by Bacillus PGPR antibiotic compounds
      • 4.2.2 Improvement of phosphoric and nitrogenous nutrition in plants
      • 4.2.3 Synthesis of siderophores
      • 4.2.4 Hydrolases as active components of Bacilli bacteria
      • 4.2.5 Synthesis of hormone-like compounds and signalling molecules
      • 4.2.6 Activation of the plant defence system
      • 4.2.7 Destruction of mycotoxins and increasing plant resistance against them
    • 4.3 Conclusion
    • Acknowledgements
    • References
  • 5: Biofilm Formation on Plant Surfaces by Rhizobacteria: Impact on Plant Growth and Ecological Significance
    • Abstract
    • 5.1 Introduction
    • 5.2 Processes in Biofilm Formation
      • 5.2.1 Initial attachment
      • 5.2.2 Irreversible attachment
      • 5.2.3 Microcolony formation
      • 5.2.4 Maturation
      • 5.2.5 Dispersion
    • 5.3 Ecological Significance of Biofilm Formation
      • 5.3.1 Defence
      • 5.3.2 Availability of nutrients to microbes
      • 5.3.3 Colonization
      • 5.3.4 Acquisition of new genetic traits
    • 5.4 Biofilms in the Rhizosphere
      • 5.4.1 Biofilm formation by PGPR
      • 5.4.2 Biofilm formation by phytopathogens
    • 5.5 Multi-species Biofilms in the Rhizosphere
      • 5.5.1 Role of bacterial signals in biofilm formation
    • 5.6 Role of Plant Root Exudates on Biofilms
    • 5.7 Biofilms in Relation to Plant Growth and Health Protection
      • 5.7.1 Role of biofilms in biocontrol of plant diseases
      • 5.7.2 Role of biofilms in mitigating stress in the rhizosphere
    • 5.8 Conclusion
    • Acknowledgement
    • References
  • 6: Biofilmed Biofertilizers: Application in Agroecosystems
    • Abstract
    • 6.1 Introduction
    • 6.2 Biofertilizers and theCommunity Approach of Microbes
    • 6.3 Role of BFBFs in Agroecosystems
    • 6.4 Fertilizing Potential of BFBFs
    • 6.5 Conclusion
    • Acknowledgements
    • References
  • 7: Microbial Nanoformulation: Exploring Potential for Coherent Nano-farming
    • Abstract
    • 7.1 Introduction
    • 7.2 Applications of Nanotechnology in Agriculture: Bridging the Gap
    • 7.3 Role of Various Microbes in the Synthesis of NPs
      • 7.3.1 Metallic NPs
      • 7.3.2 Oxide NPs
      • 7.3.3 Sulfide NPs
      • 7.3.4 Other NPs
    • 7.4 Possible Mechanisms for Antimicrobial Action of NPs Against Plant Pathogens
    • 7.5 Issues Related to Environmental Biosafety of Metal NPs
      • Forecasting severe threats
    • 7.6 Regulations for Nanotechnology
      • 7.6.1 European Union’s approach to regulating nanotechnology
      • 7.6.2 International standards for nanotechnology-based research
      • 7.6.3 International scenario on biosafety of nanoproducts
    • 7.7 Conclusions and Recommendations
    • Acknowledgements
    • References
  • 8: Bacillus thuringiensis: a Natural Tool in Insect Pest Control
    • Abstract
    • 8.1 Short Story of Bacillus thuringiensis
    • 8.2 Biodiversity of Toxin Proteins
    • 8.3 Mode of Action of Bacillus thuringiensis Cry Proteins
    • 8.4 B. thuringiensis Cry toxins as Bioinsecticide Products
    • 8.5 Development of Transgenic B. thuringiensis Crops
    • 8.6 Protein Engineering in B. thuringiensis Toxins
    • 8.7 Conclusion and Future Prospects
    • References
  • 9: Pleurotus as an Exclusive Eco-Friendly Modular Biotool
    • Abstract
    • 9.1 Introduction
    • 9.2 Historic Details of Pleurotus
    • 9.3 Biological Species of Pleurotus
    • 9.4 Pleurotus as a Modular Biotool
      • 9.4.1 Biotool for degradation and bioremediation
        • Degradation of lignocelluloses
        • Decolorization of textile dyes
        • Bioremediation of heavy metals
        • Degradation of pesticides
        • Degradation of herbicides
        • Degradation of explosives
        • Degradation of polycyclic aromatic hydrocarbons(PAH)
      • 9.4.2 Biotool for productionof multipurpose enzymes
        • Production of protease
        • Production of cellulase
        • Production of xylanase
        • Production of peroxidases
        • Production of laccase
      • 9.4.3 Biotool for production of food and food derivatives
        • Biotool producing single cell protein (SCP)
        • Biotool producing mushrooms
        • Biotool producing multivitamins
        • Biotool producing minerals
        • Biotool producing dietary fibres
      • 9.4.4 Biotool for production of medicinal products
        • Biotool producing antioxidants
        • Biotool producing polysaccharides
      • 9.4.5 Biotool for production of animal feed and fodder
      • 9.4.6 Biotool for production of compost
      • 9.4.7 Biotool for biobleaching
        • Biotool of pulp bleaching
        • Biotool of skin bleaching
    • 9.5 Conclusion
    • References
  • 10: Use of Biotechnology in Promoting Novel Food and Agriculturally Important Microorganisms
    • Abstract
    • 10.1 Introduction
    • 10.2 Role of Microbes in Agriculture and the Food Industry
      • 10.2.1 Biofertilizers and plant growth promoters
      • 10.2.2 Microbes as biotic stress managers
      • 10.2.3 Microbes as abiotic stress alleviators
      • 10.2.4 Microbes in food processing
        • Degradation of natural toxins
        • Biotransformation of mycotoxins
        • Novel microbial enzymes with wider adoptability and utility
    • 10.3 Biotechnology for Characterization of Agricultural Microbes
      • 10.3.1 Identification of microbes using 16S rRNA analysis
      • 10.3.2 Characterization of microbial genes useful in agriculture
      • 10.3.3 Targeted gene sequence
      • 10.3.4 Differential expression studies
      • 10.3.5 Genome sequencing
      • 10.3.6 Metagenomics for new beneficial inoculants
    • 10.4 Biotechnology to Enhance the Activity of Microorganisms Useful to Agriculture
      • 10.4.1 Protoplast fusion
      • 10.4.2 Genetic recombination
      • 10.4.3 Use of regulators for expression of microbial genes
    • 10.5 Concerns About the Use of GMMs
    • 10.6 Future Work
    • References
  • 11: Endophytes: an Emerging Microbial Tool for Plant Disease Management
    • Abstract
    • 11.1 Introduction
      • 11.1.1 Advantages of endophytes in plant disease management
      • 11.1.2 Biodiversity of endophytes
    • 11.2 Major Endophytic Microorganisms
      • 11.2.1 Fungal endophytes
      • 11.2.2 Bacterial endophytes
      • 11.2.3 Actinomycetes
        • Antimicrobial activity of endophytic actinomycetes
    • 11.3 Endophyte–Host Relationship
    • 11.4 Bioactivity of Endophytes
    • 11.5 Mechanisms of Action of Endophytes
      • 11.5.1 Direct parasitism
        • Antibiosis
        • Production of lytic enzymes
        • Detoxification and degradation of virulence factors
        • Hyperparasites and predation
      • 11.5.2 Indirect effects
        • Induction of plant resistance
        • Stimulation of plant secondary metabolites
        • Promotion of plant growth and physiology
        • Competition
    • 11.6 Endophytes: an Emerging Tool as Biocontrol Agents
      • 11.6.1 Potential endophytic antagonists
      • 11.6.2 Endophytes’ metabolites active against insects and nematodes
        • Insects
        • Nematodes
      • 11.6.3 Protocol for isolation of endophyticmicroorganisms
    • 11.7 Conclusion
    • References
  • 12: Role of Listeria monocytogenes in Human Health: Disadvantages and Advantages
    • Abstract
    • 12.1 Introduction
    • 12.2 Disadvantages and Advantages of the Bacterium
      • 12.2.1 Disadvantages
        • Food poisioning
        • Abortion
        • Meningitis
        • Other infections
      • 12.2.2 Advantages
        • L. monocytogenes as a live bacterial vaccine vector
        • L. monocytogenes in anti-cancer therapies
        • Treatment of infectious diseases
    • 12.3 Conclusion and Future Prospects
    • Acknowledgements
    • References
  • 13 Natural Weapons against Cancer from Bacteria
    • Abstract
    • 13.1 Introduction
    • 13.2 Anticancer Compounds from Marine Bacteria
    • 13.3 Anticancer Activities of Lactic Acid Bacteria (LAB)
    • 13.4 Anticancer Activities of Bacteriocins/Antimicrobial Peptides Isolated from Bacteria
    • 13.5 Conclusion
    • References
  • 14: Giardia and Giardiasis: an Overview of Recent Developments
    • Abstract
    • 14.1 Introduction
    • 14.2 Historical Background of Giardia
    • 14.3 Systemic Classification of Giardia
    • 14.4 Epidemiology
    • 14.5 Life Cycle
      • 14.5.1 Trophozoite structure
      • 14.5.2 Mitosome
      • 14.5.3 Cyst structure
    • 14.6 Molecular Biology
      • 14.6.1 Transfection
      • 14.6.2 Transcription and translation
    • 14.6.3 Tranposons
    • 14.7 The RNA Interference (RNAi) Pathway in Giardia
    • 14.8 Oxidative Stress
    • 14.9 Mode of Cell Death
    • 14.10 Immunology
      • 14.10.1 Humoral response
      • 14.10.2 Cell-mediated response
    • 14.11 Antigenic Variation
      • 14.11.1 Occurrence of antigenic variation
      • 14.11.2 Molecular mechanism in the control of antigenic variation
    • 14.12 Pathology and Pathogenesis
      • 14.12.1 Clinical features
      • 14.12.2 Diagnosis
        • Microscopic stool examination
        • Examination of intestinal fluid
        • Small bowel biopsy
        • Gastrointestinal radiology
        • Immunodiagnosis
        • DNA probe
        • Molecular diagnosis – nucleic acid detection methods
    • 14.13 Treatment of Giardiasis
      • 14.13.1 G. lamblia susceptibility towards aminoglycosides
      • 14.13.2 Susceptibility to nitroheterocyclic drugs
        • Mode of action of tinidazole
      • 14.13.3 Susceptibility to benzimidazoles
      • 14.13.4 Other agents
      • 14.14 Potential Drug Target Against Giardia
      • 14.15 Prevention of Giardiasis
    • References
  • 15: Power of Bifidobacteria in Food Applications for Health Promotion
    • Abstract
    • 15.1 Introduction
    • 15.2 The Bifidobacterium
      • 15.2.1 Taxonomy and general features
      • 15.2.2 Structure of the cell wall
      • 15.2.3 Oxygen tolerance
      • 15.2.4 Temperature and pH
      • 15.2.5 Metabolism of carbohydrates
      • 15.2.6 Sensitivity to antibiotics
    • 15.3 Microbial Ecosystem and Health Effects
      • 15.3.1 Gut microbiota
      • 15.3.2 Diarrhoea
      • 15.3.3 Inflammatory bowel diseases
      • 15.3.4 Allergenic diseases
      • 15.3.5 Cancer prevention
      • 15.3.6 Helicobacter pylori infection
      • 15.3.7 Lactose intolerance
    • 15.4 Bifidobacteria in Food Products
      • 15.4.1 Dairy-based matrices
        • Milk
        • Yoghurt
        • Cheese
        • Ice cream
      • 15.4.2 Non-dairy based matrices
        • Fruits and vegetables
        • Cereals
    • 15.5 Concluding Remarks
    • Acknowledgements
    • References
  • 16: Probiotics and Dental Caries: a Recent Outlook on Conventional Therapy
    • Abstract
    • 16.1 Introduction
    • 16.2 Dental Caries
    • 16.3 Potential of Probiotics for Prevention or Treatment of Dental Caries
    • 16.3.1 Using probiotics to replace the pathogenic flora
    • 16.4 Direct and Indirect Mechanisms of Probiotic Action
      • 16.4.1 Modulation of systemic immune system
      • 16.4.2 Effect on local immunity
      • 16.4.3 Effect on non-immunologic/non-specific defence mechanisms
      • 16.4.5 Prevention of plaque formation by neutralizing free electrons and production of antioxidants
      • 16.4.6 Probiotics change the environment
    • 16.5 Concluding Remarks and Future Directions
    • References
  • 17: Human Microbiota for Human Health
    • Abstract
    • 17.1 Introduction
    • 17.2 Distribution of Microbes in the Human Body
    • 17.3 Microbial Flora Acquired During Development
    • 17.4 Human Microbiota and Health
    • 17.5 Variation in the Human Microbiota
    • 17.6 Gut Microflora and Human Metabolism
    • 17.7 Horizontal Gene Transfer (HGT) Favours Bacterial Efficiency
    • 17.8 Microbiota and Disease
    • 17.9 Biotherapeutic Agents from Human Milk
    • 17.10 Microbiota and its Future in Wealth Generation
    • References
  • 18: Biotechnological Production of Polyunsaturated Fatty Acids
    • Abstract
    • 18.1 Introduction
    • 18.2 Microbial Metabolism for PUFA Production
    • 18.3 Oleaginous Microorganisms
    • 18.4 Production, Extraction and Chemical Characterization of Microbial Oil
      • 18.4.1 Production of Microbial Oil
      • 18.4.2 Extraction of Microbial Oil
      • 18.4.3 Chemical Characterization of Microbial Oil
    • 18.5 Microbial Oil’s Applications
    • 18.6 Future Trends
    • 18.7 Concluding Remarks
    • Acknowledgements
    • References
  • 19: Functional Enzymes for Animal Feed Applications
    • Abstract
    • 19.1 Introduction
    • 19.2 Application of Functional Enzymes in Animal Feeding
    • 19.3 Phytases (Chemical Abstracts Service (CAS) # 37288-11-2)
      • 19.3.1 Characterization and production of phytase
      • 19.3.2 Enzymatic hydrolysis of phytic acid
      • 19.3.3 Application of phytases in animal feed
    • 19.4 Xylanases (CAS # 9025-57-4)
      • 19.4.1 Classification and production
      • 19.4.2 Application in animal feed
    • 19.5 Future Trends
    • References
  • 20: Microbial Xylanases: Production, Applications and Challenges
    • Abstract
    • 20.1 Introduction
    • 20.2 Xylan: Composition and Structure
    • 20.3 Xylanases: Classification and Characteristics
      • 20.3.1 Endo-1,4-β-xylanases
      • 20.3.2 β-Xylosidases
      • 20.3.3 α-Arabinofuranosidases
      • 20.3.4 Acetylxylan esterase
      • 20.3.5 α-Glucuronidases
    • 20.4 Production of Xylanases
      • 20.4.1 Fungi
      • 20.4.2 Bacteria
    • 20.5 Production of Xylanases Under Solid State Fermentation (SSF) and Submerged Fermentation (SmF)
      • 20.5.1 Xylanase production by SmF
      • 20.5.2 Production of xylanase by SSF
    • 20.6 Biotechnological Applications
      • 20.6.1 Bioethanol production
      • 20.6.2 Animal feedstocks
      • 20.6.3 Xylanases in the pulp and paper industry
        • Pulp fibre morphology
        • Biobleaching of pulp
      • 20.6.4 Xylanases in the baking industry
      • 20.6.5 Fruit juice and beer clarification
      • 20.6.6 Improving silage
      • 20.6.7 Lignocellulosic bioconversions
      • 20.6.8 Xylanases in textile processing
      • 20.6.9 Bioenergy
    • 20.7 Xylanases: Challenges
    • 20.8 Conclusion and Future Prospects
    • References
  • 21: Microbial Chitinase: Production and Potential Applications
    • Abstract
    • 21.1 Introduction
    • 21.2 General Structure and Properties of Chitin
      • 21.2.1 α-Chitin
      • 21.2.2 β-Chitin
      • 21.2.3 γ-Chitin
    • 21.3 General Structure, Properties and Classification of Chitinase
    • 21.4 Source of Microbial Chitinase
      • 21.4.1 Bacterial chitinase
      • 21.4.2 Fungal chitinase
    • 21.5 Production of Chitinase
      • 21.5.1 Submerged fermentation (SmF) system
        • Carbon sources
        • Nitrogen sources
        • Metal ions
      • 21.5.2 Solid state fermentation (SSF) system
      • 21.5.3 Statistical optimization of chitinase production
      • 21.5.4 Purification of chitinase and its characterization
        • pH
        • Temperature
        • Metal ions and inhibitors
        • Molecular mass
    • 21.6 Applications of Chitinase
      • 21.6.1 Antifungal properties of chitinase
      • 21.6.2 Chitinases and transgenic plants
      • 21.6.3 Chitinases as a biopesticide
      • 21.6.4 Isolation of protoplasts
      • 21.6.5 Medical applications of chitinase
      • 21.6.6 Production of chito-oligosaccharides
      • 21.6.7 Chitinase as a mosquitocidal agent
      • 21.6.8 Chitinase as a nematicidal agent
      • 21.6.9 Treatment of chitinous waste
    • 21.7 Recent Patents and their Significance
    • References
  • 22: Characteristics of Microbial Inulinases: Physical and Chemical Bases of their Activity Regulation
    • Abstract
    • 22.1 Introduction
    • 22.2 Physical and Chemical Properties of Inulinases
    • 22.3 Correlation Between Amino Acid Sequences of Inulinases and their Physical and Chemical Properties
    • 22.4 Immobilization – One of the Ways of Regulating Inulinase Activity
    • 22.5 Mechanisms of Interaction between Inulinase and the Matrices of Ion Exchange Materials
    • 22.6 Conclusion
    • Acknowledgements
    • References
  • 23: Microbial Resources for Biopolymer Production
    • Abstract
    • 23.1 Introduction
    • 23.2 Biopolymer Production by Bacteria: Biosynthesis and Applications
      • 23.2.1 Bacterial cellulose (BC)
      • 23.2.2 Xanthan
      • 23.2.3 Polyhydroxyalkanoate (PHA)
      • 23.2.4 Summary of bacterial polymers
    • 23.3 Biopolymer Production by Fungi and Yeasts: Biosynthesis and Applications
      • 23.3.1 Chitin and chitosan
      • 23.3.2 Pullulan
      • 23.3.3 Glucan and the chitin–glucan complex (CGC)
      • 23.3.4 Summary of fungal polymers
    • 23.4 Final Remarks and Future Prospects
    • Acknowledgements
    • References
  • 24: Microbial Metabolites in the Cosmetics Industry
    • Abstract
    • 24.1 Introduction
    • 24.2 Microbially Produced CompatibleSolutes in Cosmetic Applications
      • 24.2.1 Ectoines
      • 24.2.2 Ectoines in the cosmetics industry
    • 24.3 Kojic Acid (CAS# 501-30-4)
      • 24.3.1 Characterization, preparation and application of kojic acid
    • 24.4 Botulinum Toxin (CAS# 93384-43-1)
    • 24.5 Microbial Polysaccharides
      • 24.5.1 Hyaluronic acid (HA) (CAS# 9004-61-9)
      • 24.5.2 Xanthan (CAS# 11138-66-2)
      • 24.5.3 Pullulan (CAS# 9057-02-7)
      • 24.5.4 Kefiran (CAS# 86753-15-3)
      • 24.5.5 Alginic acid (CAS# 9005-32-7)
    • 24.6 Medicinal Compounds from Mushrooms Used for Cosmetic Applications
      • 24.6.1 Mushroom cosmeceutical products
      • 24.6.2 Mushroom tyrosinase inhibitors
      • 24.6.3 Chitin–glucan
    • 24.7 Microbial Derivatives as FunctionalCosmetics
      • 24.7.1 Depigmenting material from microbialderivatives
      • 24.7.2 Functional cosmetics and photoageing caused by UVB irradiation
    • 24.8 Conclusion and Future Prospects
    • References
  • 25: Fungi of the Genus Pleurotus: Importance and Applications
    • Abstract
    • 25.1 Introduction
    • 25.2 Lignocellulosic Biomass
      • 25.2.1 Pleurotus production usingligno cellulosic biomass as a substrate
    • 25.3 Pleurotus Species
      • 25.3.1 Pleurotus ostreatus (Jacq.:Fr) Kummer
      • 25.3.2 Pleurotus florida Eger
      • 25.3.3 Pleurotus eryngii (DC.:Fr) Quel
      • 25.3.4 Pleurotus sajor-caju Fr.:Fr.
      • 25.3.5 Pleurotus cystidiosus O.K. Mill (P. abalonus Han, Chen & Cheng)
      • 25.3.6 Pleurotus cornucopiae (Paulet) Rolland
      • 25.3.7 Pleurotus djamor (Rumph. ex Fr.)
      • 25.3.8 Pleurotus pulmonarius (Fr.) Quél.
    • 25.4 Improvements to Pleurotus Strains
    • 25.5 Nutritional Importance of the Genus Pleurotus
    • 25.6 Medicinal and Therapeutic Properties of Pleurotus Species
      • 25.6.1 Antioxidants
      • 25.6.2 Hypocholesterolaemic agents
      • 25.6.3 Antitumour agents
      • 25.6.4 Importance of glucans
    • 25.7 Production of Industrial Enzymes by Pleurotus
      • 25.7.1 Oxidase enzymes
        • Manganese peroxidase (MnP)
        • Versatile peroxidase (VP)
        • Laccases
      • 25.7.2 Hydrolase enzymes
        • Cellulases
        • Xylanases
        • Proteases
    • 25.8 Bioremediation of Contaminated Soils and Water Using Pleurotus
    • 25.9 Conclusion
    • References
  • 26: Useful Microorganisms for Environmental Sustainability: Application of Heavy Metal Tolerant Consortia for Surface Water Decontamination in Natural and Artificial Wetlands
    • Abstract
    • 26.1 Introduction
    • 26.2 Study Case
    • 26.3 Methodology
      • 26.3.1 Toxicity test
      • 26.3.2 Reactors
      • 26.3.3 Inoculation of reactors 1 and 3
      • 26.3.4 Statistical analysis
    • 26.4 Results and Discussion
      • 26.4.1 Toxicity test
      • 26.4.2 Reactor experiment
      • 26.4.3 Heavy metals removal
        • Mercury removal
        • Lead removal
        • Chromium removal
    • 26.5 Conclusion
    • 26.6 Final Remarks
    • Acknowledgements
    • Note
    • References
  • 27: Exopolysaccharide (EPS)-producing Bacteria: an Ideal Source of Biopolymers
    • Abstract
    • 27.1 Introduction
      • 27.1.1 Gelling agent
      • 27.1.2 Medical applications
      • 27.1.3 Source of monosaccharides
      • 27.1.4 Emulsifiers
      • 27.1.5 Heavy metal removal
      • 27.1.6 Enhanced oil recovery
    • 27.2 Sources of EPS-producing Isolates
    • 27.3 Isolation of EPS-producing Bacteria
    • 27.4 EPS Recovery
    • 27.5 Quantification of EPS
    • 27.6 Purification of EPS
    • 27.7 Examples of Some CommerciallyUsed Bacterial EPS
      • 27.7.1 Dextran
      • 27.7.2 Xanthan gum
      • 27.7.3 Curdlan
    • References
  • 28: Microbial Process Development for Fermentation-based Biosurfactant Production
    • Abstract
    • 28.1 Introduction
    • 28.2 Biosurfactants
    • 28.3 Characteristics of Biosurfactants
    • 28.4 Fermentation Requirements
    • 28.5 Production of Biosurfactants
    • 28.6 Monitoring of Biosurfactant Production
    • 28.7 Downstream Processing of Biosurfactants
    • 28.8 General Applications of Biosurfactants
      • 28.8.1 Environmental applications
      • 28.8.2 Agricultural applications
      • 28.8.3 Food industry applications
      • 28.8.4 Cosmetic industry applications
      • 28.8.5 Application as antimicrobials
    • 28.9 Conclusion
    • References
  • 29: Recent Developments on Algal Biofuel Technology
    • Abstract
    • 29.1 Introduction
    • 29.2 Algal Growth
      • 29.2.1 Open ponds
      • 29.2.2 Photobioreactors (PBRs)
    • 29.3 Separation Techniques
      • 29.3.1 Flocculation
      • 29.3.2 Sedimentation
      • 29.3.3 Centrifugation
      • 29.3.4 Filtration
      • 29.3.5 Ultrasound
      • 29.3.6 Biologically based harvesting methods
    • 29.4 Drying Methods
    • 29.5 Lipid Extraction
      • 29.5.1 Supercritical CO2 extraction
      • 29.5.2 Electrical extraction
      • 29.5.3 Solvents
    • 29.6 Lipid Conversion
    • 29.7 Alternative Products
    • 29.8 Concerns, Limitations and Further Thoughts
    • References
  • 30: Microbial Lipases: Emerging Biocatalysts
    • Abstract
    • 30.1 Introduction
    • 30.2 Three-dimensional Structure of Bacterial Lipase Enzyme
    • 30.3 Mechanism of Lipolysis
    • 30.4 Lipase Production
    • 30.5 Secretion of Extracellular Lipase
    • 30.6 Applications of Bacterial Lipase
      • 30.6.1 Hydrolysis of oils and fats
      • 30.6.2 Interesterification of oils and fats
      • 30.6.3 Esterification of fatty acids
      • 30.6.4 Flavour development in dairy products
      • 30.6.5 Applications in the detergen tindustry
      • 30.6.6 Lipases in the food industry
      • 30.6.7 Lipases in biomedical applications
      • 30.6.8 Lipases in the synthesis of pesticides
      • 30.6.9 Lipases in the leather industry
      • 30.6.10 Lipases in environmental management
      • 30.6.11 Lipases in the cosmetics and perfume industry
    • 30.7 Conclusion
    • References
  • 31: Bioremediation of Gaseous and Liquid Hydrogen Sulfide Pollutants by Microbial Oxidation
    • Abstract
    • 31.1 Introduction
    • 31.2 Biological Conversion of Sulfide into Elemental Sulfur
    • 31.3 Sulfur-oxidizing Bacteria (SOB)
    • 31.4 Factors Affecting Sulfide Oxidation
      • 31.4.1 Effect of oxygen rate
      • 31.4.2 Effect of pH
      • 31.4.3 Effect of temperature
    • 31.5 Conclusion
    • References
  • 32: Archaea, a Useful Group for Unconventional Energy Production: Methane Production From Sugarcane Secondary Distillation Effluents Using Thermotolerant Strains
    • Abstract
    • 32.1 Introduction
    • 32.2 Theoretical Considerations
      • 32.2.1 Classification of living organisms
      • 32.2.2 Methanogenic archaea
      • 32.2.3 Main substrates used by methanogenic archaea
      • 32.2.4 Molecular tools and denaturing gradient gel electrophoresis (DGGE)
    • 32.3 Methodology
      • 32.3.1 Assessment of vinasses composition
      • 32.3.2 Upflow anaerobic sludge blanket (UASB) reactors
      • 32.3.3 Isolating, identifying and establishing the growth kinetics of methanogenic organisms
        • Selection of the optimum working dilution
        • General culture media incubation
        • Specific culture media incubation
        • Selective culture media incubation
        • Quantification using the most probable number (MPN) technique
        • Direct plate counting method
        • Growth kinetics for each selective culture medium
        • Confocal microscopy and scanning electron microscopy
      • 32.3.4 Molecular analysis of the methanogenic community composition
        • PCR amplification
        • DGGE
        • Reamplification, sequencing and phylogenetic analysis
    • 32.4 Results and Discussion
      • 32.4.1 Vinasses composition
      • 32.4.2 Identification and growth kinetics of methanogenic organisms
        • Archaea – traditional identification
        • Methanogenic archaea and SRO quantification using the MPN technique: growth kinetics
        • Comparison of data obtained in this study with previous data
      • 32.4.3 Molecular analysis of the methanogeniccommunity composition
        • Phylogenetic reconstructions for methanogenic archaea in the UASB reactors
    • 32.5 Concluding Remarks
    • Acknowledgements
    • Note
    • References
  • 33: Industrial Additives Obtained Through Microbial Biotechnology: Biosurfactants and Prebiotic Carbohydrates
    • Abstract
    • 33.1 Biotechnology: Useful Products for the Future of Industry
    • 33.2 Prebiotic Carbohydrates
      • 33.2.1 Chemical structure and types of non-digestibleoligosaccharides (NDOs)
      • 33.2.2 Technologies for the production of NDOs
        • Fructooligosaccharides (FOS)
        • Galactooligosaccharides (GOS)
        • Xylooligosaccharides (XOS)
      • 33.2.3 Main applications: research and industry
    • 33.3 Biosurfactants
      • 33.3.1 Production of biosurfactants from residues and application of statistical methods for process optimization
      • 33.3.2 Promising environmental applications of biosurfactants
    • 33.4 Concluding Remarks
    • Acknowledgements
    • References
  • 34: Industrial Additives Obtained Through Microbial Biotechnology: Bioflavours and Biocolourants
    • Abstract
    • 34.1 Biotechnology: Useful Products for the Future of Industry
    • 34.2 Bioflavours and Aroma Compounds Obtained by Microbial Biotechnology
      • 34.2.1 Bioflavours: microbial production and potential
    • 34.3 Biocolourants
      • 34.3.1 Biocolourants: microbial production and potential
    • 34.4 Trends and Prospects for New Industrial Additives
      • 34.4.1 Additives fitting the sensory trend
      • 34.4.2 Prospects for additives for the healthiness and wellness trend
    • 34.5 Advances in Biotechnology for New Industrial Additives
    • 34.6 Use of ‘Omics’ Tools in Searching for New Bioproducts
    • 34.7 Concluding Remarks
    • Acknowledgements
    • References
  • 35: Actinomycetes in Biodiscovery: Genomic Advances and New Horizons
    • Abstract
    • 35.1 Introduction
    • 35.2 Contributions of Actinomycetes to Biodiscovery
      • 35.2.1 Antibiotics: early years (1940–1974) to mid-era (1975–2000)
      • 35.2.2 New age (2001 onwards): genomics-inspired discovery of bioactive compounds
    • 35.3 Genome Mining
      • 35.3.1 Cryptic secondary metabolite pathways
      • 35.3.2 Diverse enzymology and biosynthetic pathways
      • 35.3.3 Polyketides and non-ribosomal peptides
      • 35.3.4 Ribosomal natural products
      • 35.3.5 Evolutionary systems biology
      • 35.3.6 Bioinformatics
      • 35.3.7 Extracellular microbial environment and metabolomics
      • 35.3.8 Microbiomics
      • 35.3.9 Target-directed screening for antibiotic activity
    • 35.4 Actinomycetes in Nature
      • 35.4.1 Natural roles of antibiotics
      • 35.4.2 Metagenomics
      • 35.4.3 Resistome concept in relation to antibiotic discovery
      • 35.4.4 Target-directed search and recovery of bioactive microorganisms
    • 35.5 Future Prospects
    • Acknowledgements
    • References
  • 36: Molecular Strategies for the Study of the Expression of Gene Variation by Real-time PCR
    • Abstract
    • 36.1 Introduction
    • 36.2 Theory of Real-time PCR
      • 36.2.1 Chemistry: types of fluorophores
      • 36.2.2 Strategies for RNA quantification by real-time PCR
        • Absolute quantification
        • Relative quantification
      • 36.2.3 Normalization
      • 36.2.4 Optimization of qPCR
      • 36.2.5 Applications
    • 36.3 Conditions for Quantification of Gene Expression of bgl-A, bgl and CspA from Shewanella sp. G5 Cultures
      • 36.3.1 Methods
        • Culture conditions
        • RNA extraction and cDNA synthesis
        • Design of oligonucleotide primers to detect b-glucosidase genes by conventional PCR
        • Real-time PCR assay
        • Standard curves and normalization
        • Relative quantification and data analysis
      • 36.3.2 Results and discussion
        • Analysis of designing primers for genes of interest
        • Primer evaluation by conventional PCR
        • Optimization of real-time PCR
        • Normalization with the reference gene and generation of standard curves
        • Relative quantification analyses applying the 2–ΔΔCt method
    • 36.4 Conclusion
    • References
  • 37: Whole Genome Sequence Typing Strategies for Enterohaemorrhagic Escherichia coli of the O157:H7 Serotype
    • Abstract
    • 37.1 Introduction
    • 37.2 Typing Methodologies and Resolution Power
      • 37.2.1 Multi-locus enzymeel ectrophoresis (MLEE) and sequencing typing
      • 37.2.2 Phage susceptibility assay
      • 37.2.3 Pulsed-field gel electrophoresis (PFGE)
      • 37.2.4 Metabolic typing
      • 37.2.5 Octamer-based genome scanning (OBGS) typing assay
      • 37.2.6 Multiple-locus variable-number tandem repeat analysis (MLVA)
      • 37.2.7 Shiga-toxin-producing bacteriophage insertion site typing (SBI)
      • 37.2.8 Lineage-specific polymorphism assay (LSPA)
      • 37.2.9 Whole genome mapping (WGM)
      • 37.2.10 Comparative genome hybridization
      • 37.2.11 Genome-wide association studies (GWAS)
    • 37.3 Historical View of E. coli O157:H7 Genomics
    • 37.4 Whole Genome Sequence Typing
    • 37.5 Impact of NGS Technologies
    • 37.6 Typing Isolates Based on the Virulence Complement
    • 37.7 Conclusions
    • Acknowledgements
    • References
  • 38: Microbial Keratinases: Characteristics, Biotechnological Applications and Potential
    • Abstract
    • 38.1 Introduction
    • 38.2 Characteristics and Properties of Keratinases
      • 38.2.1 Optimal pH and temperature
      • 38.2.2 Biochemical properties of keratinases
      • 38.2.3 Chemical properties of keratinases
      • 38.2.4 Keratinous substrates and their specificities
      • 38.2.5 Mechanism of keratinolysis
    • 38.3 Sources of Microbial Keratinases
    • 38.4 Optimization of Keratinase Production
    • 38.5 Established Applications of Keratinases
      • 38.5.1 Waste management
      • 38.5.2 Agroindustry
        • Animal feed and feed supplements
        • Fertilizers
      • 38.5.3 Leather and textile industry
      • 38.5.4 Consumer products
        • Detergent
        • Personal care products
      • 38.5.5 Pharmaceutical industry
      • 38.5.6 Prion decontamination
    • 38.6 Potential Applications of Keratinases
      • 38.6.1 Biological control
      • 38.6.2 Green energy
      • 38.6.3 Silk degumming
      • 38.6.4 Other applications
    • 38.7 Conclusion
    • References
  • 39: Philippine Fungal Diversity: Benefits and Threats to Food Security
    • Abstract
    • 39.1 Introduction
    • 39.2 The Genesis and Development of Philippine Mycology
    • 39.3 Case study 1: Biological Control of Plant Pathogens
    • 39.4 Case Study 2: Microbial Gifts for Agriculture
    • 39.5 Case Study 3. Breeding for Resistance Against Cereal Blast
    • 39.6 Case Study 4. Mycotoxins in Maize
    • References
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика