Электронная библиотека Финансового университета

     

Детальная информация

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

This book provides a broad, well-structured review of strawberries and their cultivation under current environmental conditions. Methods of strawberry cultivation have undergone many improvements, and this book covers aspects from plant propagation, architecture, genetic resources, breeding, abiotic stresses and climate change to evolving diseases and their control. The first chapter gives a general introduction to strawberry with some important statistics. It is followed by Section 1 on Genetics, Breeding and Omics, which contains five chapters. Chapters 2 and 3 discuss modern aspects related to available genetic resources and breeding for yield, quality and disease traits. The scope of metabolomics is discussed with special reference to white strawberry (Fragaria chiloensis subsp. chiloensis f. chiloensis) in Chapter 4. Chapter 5 is an interesting study on the transcriptomic profile of some key genes in relation to systemic acquired resistance, while chapter 6 discusses different aspects of genetic transformation in strawberry. Section 2 on Cultivation Systems and Propagation contains three chapters. These chapters discuss at length the plant growth, flowering, root growth and architecture, replant problems and plant propagation techniques. Section 3 on Disease and Stress Management contains six chapters dealing with biotic and abiotic stresses of strawberry. The first four chapters discuss traditional and emerging fungal diseases, their diagnosis and modern biointensive management strategies. Chapters 14 and 15 deal with the emerging challenges posed due to climate change and its impact on the changing magnitude and dimensions of abiotic stresses on strawberry. The book is aimed at those involved in strawberry research and development, and also to those who are interested in cultivation of strawberry for commercial gain.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Strawberry: Growth, Development and Diseases
  • Copyright
  • Contents
  • About the Editors
  • Contributors
  • Foreword by Farooq A. Zaki
  • Foreword by Nazeer Ahmed
  • Acknowledgements
  • Abbreviations
  • 1: Strawberries: a General Account
    • 1.1. Origin and History of Strawberry Cultivation
    • 1.2. Taxonomy and Biology
    • 1.3. Area, Production and Yield
    • 1.4. Health-promoting Properties
    • References
  • 2: Genetic Resources of the Strawberry
    • 2.1. Historical Background and Botanical Classification of the Genus Fragaria
    • 2.2. Evolution and Origin of the Genome
      • 2.2.1. Diploid species
      • 2.2.2. Tetraploid species
      • 2.2.3. Hexaploid species
      • 2.2.4. The genome of octoploid species
    • 2.3. Breeding Programmes Involving Native Germplasm
      • 2.3.1. Fragaria chiloensis
      • 2.3.2. Fragaria virginiana
    • 2.4. Sources of Genes of Agronomic Interest in Native Germplasm
    • 2.5. Germplasm Collections
    • References
  • 3: Strawberry Breeding
    • 3.1. Introduction
    • 3.2. Historical Breeding
    • 3.3. Modern Breeding
      • 3.3.1. Yield
      • 3.3.2. Harvesting time and fruiting habit
      • 3.3.3. Average fruit weight
      • 3.3.4. Organoleptic quality of fruit
      • 3.3.5. Pest and disease resistance
    • 3.4. Future Breeding Programmes
    • 3.5. The Main Breeding Programmes and Released Cultivars Worldwide
    • References
  • 4: Chilean White Strawberry: Phenolic Profiling of its Different Parts
    • 4.1. Introduction
    • 4.2. Phenolic Profile of Cultivated Chilean White Strawberry
      • 4.2.1. HPLC analysis of white strawberry leaves
      • 4.2.2. HPLC analysis of white strawberry flowers
      • 4.2.3. HPLC analysis of white strawberry rhizomes
      • 4.2.4. HPLC analysis of white strawberry fruits
    • 4.3. The Plant Response under Fungal Infection
    • 4.4. Future perspectives
    • Acknowledgements
    • References
  • 5: Role of Fungal Avirulent Pathogens in the Defence Response of Strawberry
    • 5.1. Introduction
    • 5.2. Temporal Accumulation of Salicylic Acid Mediated by the Avirulent Strain M23 of C. fragariae in Strawberry
      • 5.2.1. Expression analysis of the PR-1 gene
      • 5.2.2. Expression analysis of the PAL-3 gene
    • 5.3. Salicylic Acid-induced Protection
    • 5.4. The Systemic Acquired Resistance Response
    • 5.5. Transcriptional Changes in Strawberry Leaves in Response to A. strictum Interaction
    • 5.6. Defence Elicitor Produced by A. strictum
    • 5.7. Early Reactive Oxygen Species Response of Strawberry Cells to the AsES Elicitor Protein
    • 5.8. Conclusions and Future Perspective
    • References
  • 6: Agrobacterium-mediated Genetic Transformation of Strawberry
    • 6.1. Introduction
    • 6.2. Factors Affecting Transformation and Regeneration of Transformants
      • 6.2.1. Robust in vitro regeneration protocol
        • Explant type
        • Physical factors
          • DARK PERIOD
          • LIGHT AND PHOTOPERIOD
          • CHILLING
        • Chemical factors
          • PLANT GROWTH REGULATORS
          • VITAMINS AND SALTS
      • 6.2.2. Robust transformation protocol
        • Efficient Agrobacterium strain
        • Physical factors
          • PRE-CULTURE (PRE-INCUBATION)
          • CO-CULTIVATION
          • PRE-SELECTION
        • Chemical factors
          • ANTIBIOTICS
          • ACETOSYRINGONE
          • TREHALOSE AND VALIDAMYCIN A
    • 6.3. How to Estimate Transformation Success – Efficiency and Percentage are not Synonymous
    • 6.4. Conclusions and Future Perspectives
    • Acknowledgements
    • References
  • 7: Plant Architecture in Different Cultivation Systems
    • 7.1. Introduction
    • 7.2. Flower Induction and Environmental Control
    • 7.3. Growing Cycles – Plant Plasticity for Harvest Seasons
    • 7.4. Plant Manipulation in the Nursery
      • 7.4.1. Thermophotoperiod
      • 7.4.2. Location
      • 7.4.3. Chilling
      • 7.4.4. Light quality
      • 7.4.5. Nutrient supply
      • 7.4.6. Growing substrate
      • 7.4.7. Water supply
      • 7.4.8. Defoliation
      • 7.4.9. Propagation
      • 7.4.10. Evaluation of plant quality
    • 7.5. Plant Manipulation in the Field
    • 7.6. Architecture Analysis Techniques
    • 7.7. Conclusion
    • References
  • 8: Strawberry Root Growth and Architecture in Relation to Organic Residues and Replanting Problems
    • 8.1. Introduction
    • 8.2. Strawberry Root Growth and Architecture
      • 8.2.1. Apical dominance
      • 8.2.2. Lateral root formation
      • 8.2.3. Allelopathic sensitivity
      • 8.2.4. An architectural model
    • 8.3. The Strawberry Root During the Growth Cycle and Production
      • 8.3.1. Stolon and runner relationships with the mother plant
      • 8.3.2. Tray plant growth
      • 8.3.3. Root–shoot interaction and plant collapse
    • 8.4. Allelopathic Interactions and Replanting Problems
      • 8.4.1. The ambivalent relationship of strawberry with organic residues
      • 8.4.2. Strategies to overcome replanting problems
      • 8.4.3. How to improve soil quality
    • 8.5. Conclusions
    • Acknowledgement
    • References
  • 9: Plant Propagation Techniques and Types of Plants
    • 9.1. Introduction
    • 9.2. Plant Production Systems
      • 9.2.1. Nuclear stock
      • 9.2.2. Propagation stock I
      • 9.2.3. Propagation stock II
      • 9.2.4. Commercial nursery
    • 9.3. Plant Types and Cycles
      • 9.3.1. Bare-root plants
      • 9.3.2. Potted plants
      • 9.3.3. Cycles
    • 9.4. Plant Certification Systems
    • 9.5. Conclusions
    • References
  • 10: Fungal Diseases of Strawberry and their Diagnosis
    • 10.1. Introduction
      • 10.1.1. Modern strawberry, a domesticated species for production
      • 10.1.2. Economic importance of world strawberry production
      • 10.1.3. Pathogen incidence in strawberry production
    • 10.2. The Main Fungal Pathogens of Strawberry
      • 10.2.1. Botrytis cinerea
      • 10.2.2. Colletotrichum spp.
      • 10.2.3. Fusarium oxysporium
      • 10.2.4. Phytophthora spp.
      • 10.2.5. Verticillium spp.
      • 10.2.6. Other genera
    • 10.3. Diagnosis Methods and Field Monitoring of Strawberry Diseases
      • 10.3.1. Molecular methods applied to phytopathogenic fungi
      • 10.3.2. Past and present diagnosis methods
      • 10.3.3. PCR alternatives applied to fungal diagnosis
      • 10.3.4. Other molecular techniques used to study fungal pathogens
      • 10.3.5. Web-based decision support systems
      • 10.3.6. Proteomics advances in strawberry fungal pathogens
    • 10.4. Conclusions
    • Acknowledgements
    • References
  • 11: New Biocontrol Strategies for Strawberry Fungal Pathogens
    • 11.1. Introduction
    • 11.2. Methyl Bromide and Other Fungicides
    • 11.3. New Biological Control Agents
      • 11.3.1. Biofumigation
      • 11.3.2. Antagonistic rhizobacteria
      • 11.3.3. Plant growth-promoting bacteria
      • 11.3.4. Antagonistic fungi
      • 11.3.5. Trichoderma spp.
      • 11.3.6. Summary
    • 11.4. Conclusion
    • Acknowledgements
    • References
  • 12: Emerging Diseases in Strawberry Crop: Charcoal Rot and Fusarium Wilt
    • 12.1. Introduction
    • 12.2. Fusarium Wilt (Fusarium Yellows)
      • 12.2.1. Fusarium wilt management
      • 12.3. Charcoal Rot
      • 12.3.1. Charcoal rot management
    • 12.4. Soil Disinfestation After the Phase-out of Methyl Bromide
      • 12.4.1. Chemical alternatives
      • 12.4.2. Non-chemical alternatives
    • 12.5. Conclusions and Future Perspectives
    • References
  • 13: Induced Systemic Resistance to Fusarium Wilt and Antioxidative Ability in Mycorrhizal Strawberry Plants
    • 13.1. Biological Control of Fusarium Wilt
    • 13.2. Induced Systemic Resistance and Antioxidative Ability
    • 13.3. Estimation of Induced Systemic Resistance to Fusarium Wilt in Mycorrhizal Strawberry Plants
    • 13.4. Effect of Arbuscular Mycorrhizal Fungi Inoculation on Antioxidative Ability
      • 13.4.1. SOD activity
      • 13.4.2. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging activity
      • 13.4.3. Polyphenol content
      • 13.4.4. Ascorbic acid content
    • 13.5. Conclusions
    • References
  • 14: Challenges of Climate Change to Strawberry Cultivation: Uncertainty and Beyond
    • 14.1. Climate Change and Forecasting the Impact on Strawberry
      • 14.1.1. Photoperiod and vernalization
      • 14.1.2. Disease and pest outbreaks
    • 14.2. Major Environmental Factors of Critical Importance
      • 14.2.1. Temperature rise
      • 14.2.2. Temperature drop
      • 14.2.3. Water scarcity/surplus
    • 14.3. Engineering Strawberry with ‘Adaptive’ Advantages
      • 14.3.1. Classical breeding
      • 14.3.2. Advanced genetics
        • Osmotin: a multirole PR-5 protein
    • 14.4. Microorganisms for Enhancing Resilience
      • 14.4.1. Arbuscular mycorrhizal fungi
      • 14.4.2. Vesicular–arbuscular mycorrhiza
      • 14.4.3. Plant growth-promoting rhizobacteria
      • 14.4.4. Piriformospora indica
    • 14.5. Extreme Events, Policy Response and Social Action
    • 14.6. Future Perspective
    • References
  • 15: Molecular and Physiological Responses of Strawberry Plants to Abiotic Stress
    • 15.1. Introduction
    • 15.2. Salinity Stress
      • 15.2.1. Salt injury
      • 15.2.2. Salt tolerance
    • 15.3. Temperature Stress
      • 15.3.1. Cold stress
      • 15.3.2. Heat stress
    • 15.4. Water Stress
    • 15.5. Conclusions and Future Prospects
    • References
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика