Электронная библиотека Финансового университета

     

Детальная информация

Asian citrus psyllid: biology, ecology and management of the Huanglongbing vector / [edited by] Jawwad A. Qureshi and Philip A. Stansly. — 1 online resource : illustrations — <URL:http://elib.fa.ru/ebsco/2497383.pdf>.

Дата создания записи: 10.10.2019

Тематика: Citrus — Diseases and pests.; Insect pests.; Disease vectors.; Plant pests.; Plant pathogenic bacteria.; Plant pathogens.; Plant diseases.; Insect control.; Pest control.; Disease transmission.; Animal ecology.; Arthropod pests.; Pests.; Vectors.; Pathogens.; Citrus — Diseases and pests

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

"This is the first book to be published which specifically focuses on Asian Citrus Psyllid and the intractable disease it spreads in citrus crops (Huanglongbing disease)"--.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Asian Citrus Psyllid
  • Copyright
  • Preface
  • Contents
  • List of Abbreviations
  • List of Contributors
  • 1 Asian Citrus Psyllid Life Cycle and Developmental Biology
    • 1.1 Adult Reproductive Biology, Life Characteristics and Polymorphisms
    • 1.2 Development of Eggs and Nymphs
    • 1.3 Temperature Effects
    • 1.4 Humidity, Rain and Sunlight
    • 1.5 Expanding the Knowledge Base
    • References
  • 2 Functional Anatomy of the Asian Citrus Psyllid
    • 2.1 Introduction
    • 2.2 Embryology
    • 2.3 Oral Region
      • 2.3.1 Larval stylet bundle docking
      • 2.3.2 Rostrum
      • 2.3.3 Tentorium
      • 2.3.4 Stylets
      • 2.3.5 Stylet replacement
        • 2.3.5.1 Biogenesis
        • 2.3.5.2 Despooling and fitting
      • 2.3.6 Crumena
      • 2.3.7 Labium
      • 2.3.8 Salivary glands
        • 2.3.8.1 Salivary gland ducal system
    • 2.4 Alimentary Canal
      • 2.4.1 Esophagus
      • 2.4.2 Filter chamber and midgut loop
      • 2.4.3 Excretory system
    • 2.5 Reproductive System
      • 2.5.1 Female
    • References
  • 3 Mating Behavior of the Asian Citrus Psyllid
    • 3.1 Introduction
    • 3.2 General Aspects of Mating Behavior in Diaphorina citri and Other Psylloids
    • 3.3 Substrate-borne Communication in Diaphorina citri
    • 3.4 Movement Bias towards Light and Flush: Impacts on Mating Behavior
    • 3.5 Potential for Mimicking or Interfering with Vibrational Communication Signals to Trap Males or Disrupt Mating
    • Acknowledgments
    • References
  • 4 Visually and Chemically Guided Behavior of the Asian Citrus Psyllid
    • 4.1 Vision
      • 4.1.1 Structure and physiology
        • 4.1.1.1 Visual structures
        • 4.1.1.2 Electrophysiology
      • 4.1.2 Behavior
        • 4.1.2.1 Visual aspects of the natural environment
        • 4.1.2.2 Behavioral responses to visual stimuli
        • 4.1.2.3 Attractants – role of visible color in attraction
        • 4.1.2.4 Role of UV in attraction
        • 4.1.2.5 Disruptants
      • 4.1.3 Management tools
        • 4.1.3.1 Attractants
        • 4.1.3.2 Disruptants
    • 4.2 Olfaction and Gustation
      • 4.2.1 Structure and physiology
        • 4.2.1.1 Antennal structure
        • 4.2.1.2 Electrophysiology
        • 4.2.1.3 Gustatory behavior
        • 4.2.1.4 Electrical penetration analysis
        • 4.2.1.5 Stylet tracks
        • 4.2.1.6 Other phagostimulants
        • 4.2.1.7 Molecular approaches
      • 4.2.2 Behavior
        • 4.2.2.1 Kairomones
        • 4.2.2.2 Host plant choice based on volatiles
        • 4.2.2.3 Host plant volatile identification
        • 4.2.2.4 Altered host plant volatiles
        • 4.2.2.5 Attraction to host plant chemicals
        • 4.2.2.6 Repellants
        • 4.2.2.7 Guava volatiles
        • 4.2.2.8 Behavioral responses
        • 4.2.2.9 Volatiles other than guava
        • 4.2.2.10 Mineral oils
        • 4.2.2.11 Pheromones
        • 4.2.2.12 Phagostimulants
      • 4.2.3 Management tools
        • 4.2.3.1 Repellents/confusants
        • 4.2.3.2 Attractants
    • 4.3 Potential for Push–Pull and Other Strategies
    • 4.4 Factors that Affect Responses
    • 4.5 Future Directions
    • References
  • 5 Hosts of the Asian citrus Psyllid
    • 5.1 The original host
    • 5.2 Host Records
    • 5.3 Records other than Rutaceae
    • References
  • 6 Abiotic and Biotic Regulators of the Asian Citrus Psyllid Populations
    • 6.1 Abiotic Factors
      • 6.1.1 Temperature
      • 6.1.2 Humidity
      • 6.1.3 Light
      • 6.1.4 Rainfall
      • 6.1.5 Wind
      • 6.1.6 Crop season
    • 6.2 Biotic Factors
      • 6.2.1 Parasitoids
      • 6.2.2 Predators
      • 6.2.3 Entomopathogens
    • 6.3 Management
      • 6.3.1 Conservation
      • 6.3.2 Augmentation
      • 6.3.3 Commercial production and evaluation of biological control agents
    • References
  • 7 Symbionts and Pathogens of the Asian Citrus Psyllid
    • 7.1 Introduction
    • 7.2 Microorganisms Associated with D. citri
      • 7.2.1 Microbial diversity
      • 7.2.2 Primary and secondary endosymbionts
      • 7.2.3 Wolbachia
      • 7.2.4 Candidatus Liberibacter asiaticus
      • 7.2.5 Commensal bacteria
    • 7.3 D. citri Immune System: Response to Microbial Invasion
      • 7.3.1 Immune system pathways in the D. citri genome
      • 7.3.2 Reduced function may facilitate symbiont colonization
    • 7.4 Symbiont Manipulation for Pathogen and Vector Management
      • 7.4.1 Paratransgenesis
      • 7.4.2 Antimicrobials
    • 7.5 Conclusions
    • References
  • 8 Huanglongbing Pathogens: Acquisition, Transmission and Vector Interactions
    • 8.1 Introduction
    • 8.2 Pathogen Acquisition from Infected Plants
    • 8.3 Latent Period and Pathogen Translocation in the Psyllid Vector
    • 8.4 Pathogen Multiplication in the Vector
    • 8.5 Pathogen Retention and Inoculation by the Vector
    • 8.6 Vertical and Horizontal Transmission of Liberibacters Among Psyllid Individuals
    • 8.7 Effects of Liberibacter on the Vector Biology and Fitness
    • 8.8 Molecular and Proteomic Interactions between Liberibacter and the Vector
    • 8.9 Conclusions and Future Directions
    • Acknowledgements
    • References
  • 9 Epidemiology of Huanglongbing: Implications of Infective Colonization Events
    • 9.1 The New Transmission Mechanism: Infective Colonization Events
    • 9.2 Significance of Positive Psyllids and Psyllid Testing
    • 9.3 Single Trees
    • 9.4 Grove-scale Movement
    • 9.5 Scale of the Grove Neighborhood
    • 9.6 Statewide Movement
    • 9.7 Management Implications
      • 9.7.1 Nursery management
      • 9.7.2 Grove management
      • 9.7.3 Psyllid control
      • 9.7.4 Replanting
    • 9.8 Can the Long and Variable Incubation Period Help to Mitigate Disease?
    • Acknowledgments
    • References
  • 10 Sampling and Economic Thresholds for Asian Citrus Psyllid
    • 10.1 Asian Citrus Psyllid Monitoring
      • 10.1.1 Goals of ACP monitoring plans
      • 10.1.2 ACP sampling methods
        • 10.1.2.1 Stem-tap sampling
        • 10.1.2.2 Sticky traps
        • 10.1.2.3 Visual sampling
        • 10.1.2.4 Suction sampling
        • 10.1.2.5 Sweep nets
      • 10.1.3 Criteria for selection of sample method
    • 10.2 Economic Thresholds for ACP Management
      • 10.2.1 Economic thresholds for disease vectors
      • 10.2.2 Economic thresholds for ACP control at low HLB incidence
      • 10.2.3 Economic injury levels for ACP control at moderate-to-high HLB incidence
        • 10.2.3.1 Relationship between cumulative tap results and yield
        • 10.2.3.2 Practical use of cumulative stem-tap results for making spray decisions
    • References
  • 11 Management Objectives and Integration of Strategies for the Asian Citrus Psyllid
    • 11.1 Objectives of Asian Citrus Psyllid Management
    • 11.2 Pre-ACP Strategies
    • 11.3 Early-stage Invasion Strategies
    • 11.4 Mid-stage Invasion Strategies
    • 11.5 Late-stage Invasion
    • 11.6 Climate, Psyllids and HLB
    • 11.7 Insecticidal Control
      • 11.7.1 Criteria for choice
      • 11.7.2 Population detection and monitoring
      • 11.7.3 Economic injury levels
      • 11.7.4 Where to spray: the ‘edge effect’
      • 11.7.5 Application method
      • 11.7.6 Resistance management
      • 11.7.7 Area-wide management
    • 11.8 Integration with Biological Control
    • 11.9 Exclusion Methods
    • 11.10 The Way Forward
    • Acknowledgement
    • References
  • 12 Management of the Asian Citrus Psyllid in Asia
    • 12.1 Origin and Spread
    • 12.2 Pest Status
    • 12.3 Industries and Orchards
    • 12.4 Current Distribution and Influence of Abiotic Factors
    • 12.5 Use of Insecticides and Spread of HLB
    • 12.6 Resistance to Insecticides
    • 12.7 Health and Environmental Impacts of Pesticide Use
    • 12.8 Natural Enemies
    • 12.9 Plant Volatiles and Repellency
    • 12.10 Physical Controls and General Orchard Practices
    • 12.11 Concluding Remarks
    • References
  • 13 Asian Citrus Psyllid Management in São Paulo, Brazil
    • 13.1 Introduction
    • 13.2 Monitoring and Phytosanitary Alert System
    • 13.3 Chemical Control
      • 13.3.1 Nursery trees
      • 13.3.2 Young orchard (≤ 3 years old)
      • 13.3.3 Bearing orchard (> 3 years old)
    • 13.4 Biological Control
    • 13.5 External Actions
    • 13.6 Successful Cases of HLB Management
    • 13.7 Acknowledgements
    • References
  • 14 Integrated Management of Asian Citrus Psyllid and Huanglongbing in Florida: Past, Present and Future
    • 14.1 Early Detection and Spread
      • 14.1.1 Regulatory actions
      • 14.1.2 Early control efforts
    • 14.2 Critical Elements of ACP Management in Florida
      • 14.2.1 Insecticidal control
        • 14.2.1.1 Transmission and acquisition
        • 14.2.1.2 Time and space considerations
        • 14.2.1.3 Dormant sprays
        • 14.2.1.4 Edge effect
      • 14.2.2 Area-wide management
        • 14.2.2.1 Demise of CHMA
      • 14.2.3 Effect of hurricanes
      • 14.2.4 Economic injury levels
      • 14.2.5 Product choices and efficacy
      • 14.2.6 Resistance management
      • 14.2.7 Secondary pest resurgence
    • 14.3 Biological Control
      • 14.3.1 Natural control
      • 14.3.2 Augmentation
    • 14.4 Cultural Control
      • 14.4.1 Foliar nutrition, soil pH and amendments
      • 14.4.2 Flush management
      • 14.4.3 Reflective mulch
      • 14.4.4 Protected crops
    • 14.5 Production Trends
    • Acknowledgement
    • References
  • 15 Area-wide Management of Asian Citrus Psyllid in Texas
    • 15.1 Introduction
    • 15.2 Citrus Production in Texas
      • 15.2.1 Commercial citrus
      • 15.2.2 Dooryard citrus
    • 15.3 ACP Population Fluctuations in Relation to Citrus Tree Phenology
    • 15.4 Development and Implementation of ACP Area-wide Integrated Management System (AIMS) in Commercial Groves
      • 15.4.1 Development of AIMS
      • 15.4.2 Implementation and grower education
      • 15.4.3 Sampling and monitoring of D. citri populations
    • 15.5 ACP Control in Minimally Managed and Abandoned Groves
    • 15.6 ACP Control in Urban Settings
    • 15.7 Nursery Regulations to Mitigate ACP
    • 15.8 Perspectives
    • References
  • 16 Management of Asian Citrus Psyllid in California
    • 16.1 Management of ACP and HLB in Southern California
    • 16.2 Central California ACP and HLB Management
    • 16.3 Statewide Summary
    • References
  • 17 Advances in RNA Suppression of the Asian Citrus Psyllid Vector and Bacteria (Huanglongbing Pathosystem)
    • 17.1 Introduction: Huanglongbing
      • 17.1.1 Asian citrus psyllid and huanglongbing
      • 17.1.2 Management strategies
      • 17.1.3 Technologies to protect citrus
    • 17.2 Progress in Psyllid Gene Annotation and Resources
    • 17.3 Advances in RNAi in Psyllids
    • 17.4 Progress of RNA Suppression Technologies to Reduce ACP
    • 17.5 Non-canonical Nucleotides in dsRNA Increases Persistence and RNAi Activity
    • 17.6 Delivery Mechanisms
      • 17.6.1 Branched Amphiphilic Peptide Capsules
      • 17.6.2 BAPC-delivered RNAi system in arthropods
    • 17.7 Gene Editing Strategies in Asian Citrus Psyllids
      • 17.7.1 CRISPR/CAS9 background
      • 17.7.2 BAPC-CRISPR/Cas9 delivery system: adult ovaries for heritable germline gene editing (Hemiptera: Diaphorina citri)
      • 17.7.3 BAPC-CRISPR/Cas9 psyllid gene selection
    • 17.8 Future Perspective
    • Acknowledgments
    • References
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика