Карточка | Таблица | RUSMARC | |
ADVANCES IN WASTEWATER TREATMENT I [[electronic resource].]. — [S.l.]: MATERIALS RESEARCH FORUM, 2021. — 1 online resource — <URL:http://elib.fa.ru/ebsco/2707909.pdf>.Дата создания записи: 18.12.2020 Тематика: Water — Purification.; Materials — Research.; Land treatment of wastewater.; Water — Purification — Membrane filtration.; Water — Purification — Adsorption. Коллекции: EBSCO Разрешенные действия: –
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа: Анонимные пользователи Сеть: Интернет |
Аннотация
The book presents new materials and methods for waste water treatments.
Права на использование объекта хранения
Место доступа | Группа пользователей | Действие | ||||
---|---|---|---|---|---|---|
Локальная сеть Финуниверситета | Все | |||||
Интернет | Читатели | |||||
Интернет | Анонимные пользователи |
Оглавление
- front-matter
- Table of Contents
- Preface
- 1
- Introduction to Conventional Wastewater Treatment Technologies: Limitations and Recent Advances
- 1. Introduction
- 2. The water treatment process for the municipal and industrial sector
- 2.1 Primary treatment process
- 2.1.1 Screen
- 2.1.2 Grit chambers
- 2.1.3 Skimming tanks
- 2.1.4 Primary Settling Tanks (PST)
- 2.2 Secondary treatment
- 2.2.1 Aerobic attached growth system
- 2.2.1.1 Trickling filters
- 2.2.1.2 Rotating biological contactors (RBC)
- 2.2.2 Aerobic suspended growth systems
- 2.2.2.1 Activated sludge process
- 2.2.2.2 Aerated lagoons
- 2.2.2.3 Oxidation pond
- 2.3 Tertiary treatment
- 2.3.1 Disinfection process
- 2.3.2 Reverse osmosis
- 2.3.3 Electrodialysis
- 2.3.4 Up-flow anaerobic sludge blanket reactor (UASBR)
- 3. Advance water purification technologies
- 3.1 Activated carbon filters
- 3.2 Magnetic Nanoparticles
- 3.3 Ozonation
- 3.4 Ultraviolet (UV) radiation
- 3.5 Lime-Soda (LS) process
- 3.6 Zeolite process
- 4. Future wastewater treatment technologies
- Conclusion
- Acknowledgements
- References
- 2
- Advanced Oxidation Processes for Wastewater Remediation: Fundamental Concepts to Recent Advances
- 1. Introduction
- 2. Mechanism and classification
- 2.1 General mechanism
- 2.2 Classification
- 3. Various advanced oxidation processes
- 3.1 Ozonation (O3)
- 3.2. O3/H2O2 (Ozone/Hydrogen Peroxide or Peroxone)
- 3.3. UV
- 3.4 O3/UV
- 3.5. UV/H2O2
- 3.6 UV/O3/H2O2
- 3.7 Fenton’s process
- 3.8 Photo-Fenton process
- 3.9 Heterogeneous Photocatalysis
- 3.10 Ultrasound AOP (Sonolysis)
- 3.11 Microwave AOPs
- 3.12 Supercritical Water Oxidation (SCWO)
- 3.13 Gamma-ray, X-ray and Electron Beam Based Processes
- 3.14 Wet Air Oxidation
- 3.15 Electrochemical Oxidation
- 3.15.1 Anodic oxidation (AO)
- 3.15.2 Electro-Fenton’s Method
- 3.16 Sulfate Radical based AOPs
- 4. Comparison of AOPs
- 5. Commercialization/practical application of AOPs
- 6. Recent developments
- 7. Summary and future challenges
- References
- 3
- Degradation of Pharmaceutical Pollutants under UV Light using TiO2 Nanomaterial Synthesized through Reverse Micelle Nanodomains
- 1. Introduction
- 2. Mechanism of TiO2 photocatalyst against organic pollutants under UV light source
- 3. Factors affecting the photocatalyst performance
- 3.1 Influence of initial concentration of pollutant
- 3.2 Influence of catalyst loading
- 3.3 Influence of pH
- 3.4 Influence of light intensity
- 4. Experiment
- 4.1 Chemicals & materials
- 4.2 Synthesis of TiO2 photocatalyst
- 4.3 Characterization of photocatalyst
- 4.4 Photocatalytic degradation of pharmaceutical pollutants
- 5. Result and discussions
- 5.1 TiO2 photocatalyst characteristics
- 5.1.1 TGA of Ti(OH)4
- 5.1.2 X-ray diffraction
- 5.1.3 Scanning electron microscopy
- 5.1.4 Particle size using dynamic light scattering
- 5.1.5 Surface area study
- 5.1.6 UV-visible spectroscopy
- 5.2 Influence of factors on photocatalytic activity of TiO2 against LFX
- 5.2.1 Effect of catalyst dose
- 5.2.2 Effect of initial concentration of LFX
- 5.3 Photocatalytic activity of TiO2 and Degussa P25 nanomaterials against LFX, KRL and MNZ
- Conclusion
- Acknowledgements
- References
- 4
- Treatment and Analysis of Arsenic Contaminated Water
- 1. Introduction
- 2. Sources of arsenic
- 2.1 Natural processes
- 2.2 Anthropogenic sources
- 3. Treatment methodologies of arsenic contaminated water
- 3.1 Preoxidation of As(III) in water
- 3.2 Sorption
- 3.2.1 Elemental iron
- 3.2.2 (oxy)(hydr)oxides of iron, aluminium and manganese
- 3.2.3 Titanium dioxides(TiO2)
- 3.2.4 Activated and impregnated activated carbon
- 3.2.5 Biomass
- 3.2.6 Ion-exchange resins and metal-loaded gels
- 3.3 Precipitation/coprecipitation
- 3.3.1 Lime (CaO)
- 3.3.2 Iron and aluminium salts
- 3.4 Permeable reactive barriers (PRBs)
- 3.5 Filtration and membrane techniques
- 3.6 Magnetic treatment
- 3.7 Bioremediation and biological treatment
- 4. Analysis of arsenic contaminated water
- 4.1 Techniques analysis of waterborne arsenic
- 4.1.1 Colorimetric methods
- 4.1.2 Other spectroscopic methods
- 4.1.3 Luminescence-based methods
- 4.1.4 Hydride generation -atomic absorption spectroscopy (HG-AAS)
- 4.1.5 Electrothermal atomic absorption spectroscopy (ETAAS)
- 4.1.6 Electrochemical methods
- 4.1.7 Inductively coupled plasma mass spectrometry (ICP-MS)
- 4.1.8 Inductively coupled plasma- optical emission spectroscopy (ICP-OES)
- 4.1.9 Neutron activation analysis (NAA)
- 4.1.10 Biosensors
- Conclusion
- References
- 5
- The Applicability of Eggshell Waste as a Sustainable Biosorbent Medium in Wastewater Treatment – A Review
- 1. Introduction
- 1.1 Characterization of eggshell waste
- 2. Modifications
- 3. Isotherm modelling
- 4. Kinetic modelling
- 5. Mechanism of biosorption
- 6. Factors Affecting biosorption
- 6.1 pH
- 6.2 Concentration
- 6.3 Contact time
- 6.4 Adsorbent mass
- 7. Eggshell waste for heavy metal removal
- 8. Eggshell waste for dye removal
- Concluding remarks
- Abbreviations
- References
- 6
- Removal of PAHs from Wastewater Using Powdered Activated Carbon: A Case Study
- 1. Introduction
- 2. Materials and methods
- 2.1 Chemicals and culture medium
- 2.2 Strains and culture
- 2.3 Bacterial strain degradation and PAC adsorption
- 2.4 PAC-SA immobilization
- 2.5 Mechanical strength
- 3. Results and discussion
- 3.1 Bacteria degrade pyrene and PAC adsorption
- 3.2 Embedding and immobilization
- 3.2.1 Ratio of Gel agent, crosslinking agent and PAC
- 3.2.2 Immobilized condition
- 3.3 Physical properties of immobilized beads.
- Conclusion
- Reference
- 7
- New Class of Flocculants and Coagulants
- 1. Introduction
- 2. Polymer iron coagulant
- 2.1 Traditional polymeric iron coagulant
- 2.1.1 Polyferric sulfate (PFS)
- 2.1.2 Polyferric chloride (PFC)
- 2.2 Composite polymeric iron coagulant
- 2.2.1 Ferric polysilicate sulfate (PFSS)
- 2.2.2 Polysilicate ferric chloride (PFSC)
- 2.2.3 Polyaluminum ferric silicate (PSFA)
- 2.2.4 Polyphosphate ferric sulfate (PPFS)
- 3. Polyaluminum coagulant
- 4. Literature references
- 5. Organic/inorganic composite coagulant
- 6. Natural modified coagulant
- 6.1 Chitosan and its derivatives
- 6.2 Starch derivatives
- 6.3 Cellulose derivatives
- Conclusion
- References
- Keyword Index
- About the Editors
Статистика использования
Количество обращений: 0
За последние 30 дней: 0 Подробная статистика |