Электронная библиотека Финансового университета

     

Детальная информация

Materials research foundations ;.
Quantum dots: properties and applications. — v. 96. / edited by Inammuddin [and three others]. — 1 online resource. — (Materials research foundations). — <URL:http://elib.fa.ru/ebsco/2742092.pdf>.

Дата создания записи: 04.02.2021

Тематика: Quantum dots.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
    • Summary
  • 1 - Eco-Friendly Techniques to Synthesize Quantum Dots
    • Eco-Friendly Techniques to Synthesize Quantum Dots
    • 1. Introduction
    • 2. Green synthesis of quantum dots via biogenic methods
      • 2.1 Green synthesis of quantum dots by plant
      • 2.1.1 Possible formation mechanism
      • 2.1.2 Effective parameters on plant-mediated nanocomposite synthesis
      • 2.2 Green synthesis of quantum dots by microorganisms
      • 2.2.1 Green quantum dot synthesis by bacteria
      • 2.2.2 Green quantum dot synthesis by algae
      • 2.2.3 Green quantum dots synthesis by fungus
    • Egregia sp.
    • Pterocladiacapillacae, Janiarubins, Ulva faciata, and Colpmeniasinusa
    • Ulva lactuca seaweed
    • 3. Green synthesis of quantum dots via wet chemical techniques
      • 3.1 Sol-gel
      • 3.2 Solvo/hydrothermal
      • 3.3 Microemulsions/ reverse micelle
      • 3.4 Thermal decomposition
      • 3.5 Precipitation
    • 4. Solid-state techniques to synthesis quantum dots
    • Conclusions
    • References
  • 2
    • Fabrication Techniques for Quantum Dots
    • 1. Introduction
    • 2. Synthesis or fabrication techniques of nanostructures
    • 3. Fabrication techniques of QDs
      • 3.1 Top-down methods
      • 3.1.1 Electron beam lithography
      • 3.1.2 Focused ion beam methods
      • 3.1.3 Etching techniques
      • 3.2 Bottom-up methods
      • 3.2.1 Wet-chemical techniques
      • 3.2.1.1 Sol-gel process
      • 3.2.1.2 Microemulsion technique
      • 3.2.1.3 Hot-solution decomposition techniques
      • 3.2.2 Vapour-phase techniques
      • 3.2.2.1 Molecular beam epitaxy (MBE)
      • 3.2.2.2 Physical vapor deposition (PVD) technique
      • 3.2.2.3 Chemical vapor deposition (CVD) technique
      • 3.3 Other synthetic techniques
      • 3.3.1 Using ultrasonic or microwave irradiation
      • 3.3.2 Hydrothermal synthesis technique
      • 3.3.3 Solvothermal technique
      • 3.3.4 From microorganism bio-template
      • 3.3.5 Electrochemical assembly
      • 3.3.6 Cluster-seed method
      • 3.4 Bulk-manufacturing technique
    • 4. Perspective
    • Acknowledgement
    • References
  • 3 - Green and One-Pot Synthesis of Mint Derived Carbon Quantum Dots for Metal Ion Sensing
    • Green and One-Pot Synthesis of Mint Derived Carbon Quantum Dots for Metal Ion Sensing
    • 1. Introduction
    • 2. Experimental
      • 2.1 Chemicals and materials
      • 2.2 Equipments
      • 2.3 Synthesis of carbon quantum dots
      • 2.4 Fluorescent sensing for metal ions
    • 3. Result and discussion
      • 3.1 Fluorescent sensing
    • Conclusions
    • Acknowledgments
    • References
  • 4 - Antibacterial Quantum Dots
    • Antibacterial Quantum Dots
    • 1. Introduction
    • 2. Synthesis of graphene quantum dots (GQDs)
      • 2.1 Top-down approaches
      • 2.1.1 Electrochemical oxidation
      • 2.2.2 Laser ablation
      • 2.2.3 Arc discharge
      • 2.2 Bottom-up approaches
      • 2.2.1 Hydrothermal synthesis
      • 2.2.2 Microwave-assisted synthesis
      • 2.2.3 Combustion method
    • 3. Physical and chemical properties
      • 3.1 Absorbance
      • 3.2 Photoluminescene
      • 3.3 Electroluminescence
    • 4. Antibacterial activity of GQDs
      • 4.1 Light-assisted antibacterial activity of GQDs
      • 4.2 Shape and size of GQDs
      • 4.3 H2O2-assisted antibacterial activity of GQDs
      • 4.4 Biomedical application of GQDs
    • Conclusions
    • Acknowledgments
    • References
  • 5 - Computational Theories Used in the Study of Quantum Dots
    • Computational Theories Used in the Study of Quantum Dots
    • 1. Introduction
    • 2. Computational approaches
      • 2.1 Molecular mechanics
      • 2.2 Quantum mechanics
      • 2.2.1 Density functional theory
      • 2.2.2 Effective mass approximation
      • 2.2.3 Linear combination of atomic orbitals
      • 2.2.4 Tight binding
      • 2.2.5 Time dependent DFT
      • 2.2.4 Other approaches
      • 2.3 Evolution of the theoretical approaches in the band gap QDs calculations
    • Conclusions and future perspectives
    • Acknowledgements
    • References
  • 6 - Application of Quantum Dots in Sensors
    • Application of Quantum Dots in Sensors
    • 1. Introduction
    • 2. Properties of QDs used in sensing applications
    • 3. Quantum dot-based sensors
      • 3.1 Classification of sensors
      • 3.1.1 Chemosensors
      • 3.1.2 Biosensors
      • 3.2 Sensing signals in QD based sensors
      • 3.2.1 Luminescence based sensors
      • 3.2.2 Photoluminescence (PL) sensors
      • 3.2.3 Chemiluminescence sensors
      • 3.2.4 Electrochemical based sensors
    • 4. Signal amplification strategies in quantum dot-based sensors
      • 4.1 Forster (Fluorescence) resonance energy transfer
      • 4.2 Bioluminescence resonance energy transfer and Chemiluminescent resonance energy transfer
      • 4.3 Photoinducedelectron transfer (PET)
      • 4.4 Charge transfer
    • Conclusions
    • Acknowledgements
    • References
  • 7 - Applications of Quantum Dots in Supercapacitors
    • Applications of Quantum Dots in Supercapacitors
    • 1. Introduction
    • 2. Type of quantum dots (QDs) for supercapacitor electrode
    • 3. Types of supercapacitors
      • 3.1 QDs for symmetric supercapacitors
      • 3.1.1 Carbon QDs and TMO nanocomposites
      • 3.1.2 Carbon QDs and TMD nanocomposites
      • 3.1.3 Carbon QDs and polymer nanocomposites
      • 3.1.3 Carbon QDs based ternary nanocomposites
      • 3.2 QDs for asymmetric supercapacitors
      • 3.2.1 Carbon QDs and TMO nanocomposites
      • 3.2.2 Carbon QDs and polymer nanocomposites
    • Conclusion and outlook
    • References
  • 8 - Quantum Dots Based Material for Drug Delivery Applications
    • Quantum Dots Based Material for Drug Delivery Applications
    • 1. Introduction
    • 2. Synthesis and properties of quantum dots
      • 2.1 Synthesis of QDs
      • 2.2 Properties of QDs
      • 2.2.1 Quantum confinement effect and band-gap
      • 2.2.2 Luminescence property
    • 3. Quantum dots as a nanovehicle for drug loading and drug delivery
      • 3.1 QDs in nonoparticle-mediated drug delivery
      • 3.2 Monitoring drug release
      • 3.3 Photo-physical properties for traceable or visible drug delivery
    • 4. Toxicity
      • 4.1 Core toxicity
      • 4.2 Encapsulated QDs and their toxicity
    • 5. Quantum dots in bioimaging applications
    • Conclusions
    • Acknowledgments
    • References
  • 9 - Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview
    • Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview
    • 1. Introduction
    • 2. Synthesis of quantum dots via different methods
      • 2.1 Top to down approach
      • 2.1.1 Hydrothermal /solvothermal treatment
      • 2.1.2 Microwave irradiation
      • 2.2 Bottom to up approach
      • 2.2.1 Chemical method
      • 2.2.2 Carbonization procedure
    • 3. Quantum dots based materials for ultracapacitors application
      • 3.1 QDs based hybrid composites
      • 3.2 QDs based carbonic materials
    • Conclusive overview and future scope
    • Acknowledgments
    • References
  • 10 - Role of Quantum Dots in Separation Processes
    • Role of Quantum Dots in Separation Processes
    • 1. Introduction
    • 2. Quantum dots (QDs) in separation membranes
      • 2.1 Thin-film nanocomposite (TFN) membranes
      • 2.2 QDs on top of membranes surface
      • 2.3 QD/polymer composite membranes
    • 3. QDs in chromatographic separation column
    • 4. QDs in heavy metal remediation
    • 5. Magnetic quantum dots (MagDots) for cellular/molecular separation
      • 5.1 Separation of surface bound and soluble biomarkers
      • 5.2 QDs in tumor cells separation
      • 5.3 QDs in microbial cell separation
      • 5.4 QDs in ionic separation
    • Conclusion and future perspectives
    • References
  • 11 - Quantum Dots Based Materials for Water Treatment
    • Quantum Dots Based Materials for Water Treatment
    • 1. Introduction
    • 2. Classification of quantum dots
      • 2.1 Planar quantum dots
      • 2.2 Vertical quantum dots
      • 2.3 Self-assembled quantum dots
    • 3. Synthesis of quantum dots
      • 3.1 Top-down approach
      • 3.1.1 Laser ablation
      • 3.1.2 Arc discharge
      • 3.1.3 Acidic oxidation
      • 3.2 Bottom-up approach
      • 3.2.1 Combustion/thermal routes
      • 3.2.2 Microwave pyrolysis
      • 3.2.3 Hydrothermal/solvothermal synthesis
      • 3.2.4 Electrochemistry methods
    • 4. Properties of carbon based quantum dots
      • 4.1 Absorbance
      • 4.2 Photoluminescence
    • 5. Carbon quantum dots for water treatment
    • Conclusions and future scope
    • Acknowledgements
    • References
  • 12 - Semiconductor Quantum Dots
    • 1. Introduction
    • 2. Types of quantum dots
    • 3. Preparation of quantum dots
      • 3.1 Colloidal method
      • 3.2 Emulsion method
      • 3.3 Sol-gel method
      • 3.4 Co-precipitation
      • 3.5 QDs of metal chalcogenide by hot injection method
      • 3.6 Aqueous and hydrothermal synthesis
      • 3.7 Solvothermal synthesis
      • 3.8 Microwave assisted synthesis
      • 3.9 Direct adsorption method
      • 3.10 Linker assisted adsorption method
      • 3.11 Green method of synthesis of CdS QD
      • 3.12 Biological method
    • 4. Characterization
      • 4.1 Optical characterization methods
      • 4.2 Electrical characterization
      • 4.3 TEM studies
      • 4.4 Raman spectroscopy
      • 4.5 X-ray-related techniques for structural/compositional studies
    • 5. Properties
      • 5.1 Photoactivity
      • 5.2 Controllable emission light
      • 5.3 Good light intensity and stability
      • 5.4 Stokes shift and fluorescence lifetime
      • 5.5 Active surface for good biocompatibility and functionalization
      • 5.6 Quantum Confinement Effect
      • 5.7 In cancer therapy and drug delivery
      • 5.8 DNA Labelling
      • 5.9 Photodynamic therapy (PDT)
    • 6. Applications of quantum dots
      • 6.1 Luminescent probes for inorganic-trace analysis
      • 6.2 Biomonitoring and bioimaging
      • 6.3 Biosensing
      • 6.4 Photodetectors or photoelectrochemical sensors
      • 6.5 Photovoltaics (solar cells)
      • 6.6 Light emitting diodes
      • 6.7 Electrochemiluminescence
      • 6.8 Bio conjugation and surface functionalization of QDs for biological applications
    • Conclusions
    • References
  • 13 - Quantum Dots: Properties and Applications
    • 1. Introduction
    • 2. Optical properties
    • 3. Manufacturing of quantum dots
    • 4. CdSe quantum dots
    • 5. Carbon quantum dots (CDs)
      • 5.1 The mechanism of photoluminescence in quantum carbon dots
    • 6. Chemical and biological applications of nanoparticle dots
    • Conclusions
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика