Электронная библиотека Финансового университета

     

Детальная информация

Materials Research Foundations Ser.
Photocatalysis [[electronic resource]]: Advanced Materials and Reaction Engineering. — Millersville, PA: Materials Research Forum LLC, 2021. — 1 online resource (341 p.). — (Materials Research Foundations Ser.). — Description based upon print version of record. — <URL:http://elib.fa.ru/ebsco/2904119.pdf>.

Дата создания записи: 10.04.2021

Тематика: Photocatalysis.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

This book on Photocatalysis discusses new materials and reaction engineering techniques, such as heterojunction formations, composites, ion exchangers, photocatalytic membranes, etc.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Photocatalytic Membranes in Degradation of Organic Molecules
    • 1. Introduction
    • 2. Heterogeneous photocatalytic reaction
    • 3. Photocatalytic membranes
      • 3.1 Polymeric photocatalytic membranes
      • 3.1.1 Development of polyethersulfone and polysulfone membranes
      • 3.1.2 Fluoropolymeric membranes: PVDF and PTFE
      • 3.1.3 Development of photocatalytic polyaniline (PANI) membranes
      • 3.1.4 Development of photocatalytic polyamide membranes
      • 3.1.5 Development of cellulose-based photocatalytic membranes
    • 4. Inorganic membranes
      • 4.1 TiO2-based membranes
    • Abbreviations
    • Acknowledgment
    • References
  • 2
    • Photocatalytic Heavy Metal Detoxification from Water Systems
    • 1. Introduction
      • 1.1 Sources of heavy metal pollution
      • 1.2 Bio-importance of heavy metals
      • 1.3 Deleterious Environmental and health effects
    • 2. Various heavy metal removal technologies
      • 2.1 Advanced oxidation process
      • 2.2 Photocatalysis
      • 2.3 Principle & mechanism behind photocatalysis
    • 3. Photocatalysis for the heavy metal recovery
      • 3.1 Chromium (Cr)
      • 3.2 Arsenic (As)
      • 3.3 Cadmium (Cd)
      • 3.4 Copper (Cu2+)
      • 3.5 Lead (Pb2+)
      • 3.6 Mercury
    • Conclusion & Future perspectives
    • References
  • 3
    • Carbon Nanotubes based Nanocomposites as Photocatalysts in Water Treatment
    • 1. Introduction
    • 2. Properties of carbon nanotubes
    • 3. Synthesis Methods of CNTs-based Nanocomposites
      • 3.1 Simple mixing
      • 3.2 Chemical vapor deposition (CVD)
      • 3.3 Electrodeposition
      • 3.4 Hydrothermal
      • 3.5 Sol-gel
    • 4. Fundamental principles of photocatalysis
    • 5. Applications of CNTs-based nanocomposites in water treatment
    • Conclusion and future directions
    • References
  • 4
    • Photocatalytic and Adsorptional Removal of Heavy Metals from Contaminated Water using Nanohybrids
    • 1. Introduction
    • 2. Fundamental principle of photocatalysis
    • 3. Nanohybrids for photocatalytic removal of heavy metals
      • 3.1 Single system
      • 3.2 Dual system
      • 3.3 Ternary system
    • 4. Nanohybrids for adsorptional removal of organic pollutants and heavy metals
    • Conclusions and future prospects
    • References
  • 5
    • Graphitic Carbon Nitride based Photocatalytic Systems for High Performance Hydrogen Production: A Review
    • 1. Introduction
    • 2. Metal free photocatalyst: Graphitic carbon nitride
      • 2.1 Chemical structure of g-C3N4
      • 2.2 Electronic properties of g-C3N4
      • 2.3 Strategies for improving the properties of g-C3N4
      • 2.3.1 Structural modification
      • 2.3.2 Doping
      • 2.3.3 Heterojunction formation
    • 3. C3N4 based heterojunctions for H2 production
    • Conclusions
    • References
  • 6
    • Recent advances in Photocatalytic Nitrogen Fixation
    • 1. Introduction
    • 2. Advances in photocatalytic nitrogen fixation
      • 2.1 TiO2 and different oxides based photocatalysts
      • 2.2 Oxyhalides based photocatalysts
      • 2.3 Graphitic nitride carbon based photocatalysts
    • Conclusion and future perspective
    • References
  • 7
    • Perovskites based Nano Heterojunctions for Photocatalytic Pollutant Removal
    • 1. Introduction
    • 2. Perovksites
      • 2.1 Structure
      • 2.2 Types of perovskites
      • 2.3 Distinctive properties of perovskites
      • 2.3.1 Optical properties
      • 2.3.2 Piezoelectricity
      • 2.3.3 Superconductivity
      • 2.3.4 Multiferroicity
      • 2.4 Synthesis
      • 2.4.1 Sol-gel method
      • 2.4.2 Solid state reactions
      • 2.4.3 Hydrothermal method
      • 2.4.4 Co-precipitation method
    • 3. Perovskites as a photocatalyst
      • 3.1 Titanate based perovskite
      • 3.2 Ferrite perovskites
      • 3.3 Vanadium and Niobium based perovskites
      • 3.4 Oxynitride based perovskites
      • 3.5 Other perovskite systems
    • 4. Perovskite based nano-heterojunctions
      • 4.1 Synthesis of perovskites based heterojunctions
      • 4.1.1 Synthesis of Ag2S/BiFeO3
      • 4.1.2 Synthesis of LaFeO3/ g-C3N4
      • 4.1.3 Synthesis of Ag/Fe3O4 bridged SrTiO3/g-C3N4
      • 4.1.4 Synthesis of PbTiO3/CQDs
      • 4.1.5 Synthesis of CoFe2O4/BaTiO3
      • 4.1.6 Synthesis of Ag@BiPO4/BiOBr/BiFeO3
      • 4.1.6 Synthesis of AgBr/AgTaO3
      • 4.2 Photocatalytic organic pollutant removal
    • Conclusion
    • References
  • 8
    • Photocatalytic Membranes
    • 1. Introduction
    • 2. Photocatalytic membrane reactor
      • 2.1 Conversion of organic compounds
      • 2.2 Corruption of organic compounds
      • 2.3 Obstinate pollutants degradation
      • 2.4 Photocatalytic nanomaterials: Preparation and properties
      • 2.5 Photocatalytic process
      • 2.6 Photocatalytic processes by membrane operations
    • 3. Working parameters and limits of photocatalytic membranes
      • 3.1 Working mode
      • 3.2 Light source
      • 3.3 Feed characteristics
      • 3.4 Stream rate over and across the membrane
      • 3.5 Photocatalyst type
      • 3.5.1 TiO2 photocatalyst
      • 3.5.2 ZnO photocatalyst
      • 3.5.3 WO3 photocatalyst
      • 3.6 Typology of photocatalyst immobilization
    • 4. Future tendencies
    • References
  • 9
    • Composite Ion Exchangers as New Age Photocatalyst
    • 1. Introduction
      • 1.1 Heavy metals
      • 1.2 Dyes
      • 1.3 Phenols
      • 1.4 Pesticides
    • 2. Ion exchanger
      • 2.1 Classification of ion exchangers
      • 2.2 Composite ion exchangers
      • 2.3 Preparative methods for nanocomposites
      • 2.3.1 Solution and melt processing
      • 2.3.2 In-situ polymerization
      • 2.3.3 Sol-gel method
    • 3. Methods for the removal of pollutants
      • 3.1 Photocatalysis
      • 3.2 Oxidation and reduction mechanism
    • 4. Other applications of nanocomposite ion exchangers
    • Conclusion
    • References
  • 10
    • Structural Modifications of Carbon Nitride for Photocatalytic Applications
    • 1. Introduction
      • 1.1 g-C3N4 as tremendous metal-free photocatalysts
      • 1.2 Chemical structure of g-C3N4
      • 1.3 Band structure of g-C3N4
    • 2. Synthesis approaches via thermal annealing/Pyrolysis
    • 3. Strategies followed for the modification of g-C3N4
      • 3.1 Doping
      • 3.2 Metal/non-metal based doping
      • 3.3 Fabrication of g-C3N4 based binary/ternary heterojunctions
      • 3.4 Coupling with metal-free substrates
      • 3.5 Chemical modification
      • 3.6 Dye Sensitization of g-C3N4
      • 3.7 Shape specific modification
      • 3.8 Polymerization of g-C3N4
      • 3.9 Persulphate activation of g-C3N4
    • 4. Further possible modification perspectives
    • Conclusion
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика