Электронная библиотека Финансового университета

     

Детальная информация

Egerstedt, Magnus. Robot Ecology: Constraint-Based Design for Long-Duration Autonomy / Magnus Egerstedt. — 1 online resource (1 volume) — <URL:http://elib.fa.ru/ebsco/2935139.pdf>.

Дата создания записи: 09.10.2021

Тематика: Autonomous robots — Design and construction.; Robots — Control systems.; Robotics — Environmental aspects.; TECHNOLOGY & ENGINEERING / Robotics

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Cover
  • Contents
  • Preface
  • I. Long-Duration Autonomy
    • 1. Introduction
      • 1.1 Long-Duration Autonomy
        • 1.1.1 Lessons from Mars
        • 1.1.2 Operations Beyond a Single Battery Charge
        • 1.1.3 On the Value of Slowness
      • 1.2 Survivability
        • 1.2.1 Costs and Constraints
        • 1.2.2 Robots that Do (Almost) Nothing
      • 1.3 Coupling Between Environment and Robot
        • 1.3.1 Ecosystems
        • 1.3.2 Natural and Engineered Environments
      • 1.4 Summarizing and Looking Ahead
    • 2. Survival of the Robots
      • 2.1 Behavior-Based Robotics
        • 2.1.1 Behaviors in Robots and Animals
        • 2.1.2 Arbitration Mechanisms
      • 2.2 Multi-Robot Behaviors
        • 2.2.1 Flocking and Swarming
        • 2.2.2 Coordinated Control
        • 2.2.3 Formation Control
        • 2.2.4 Coverage Control
      • 2.3 The Combinatorics of the Real World
        • 2.3.1 Elephants Don’t Play Chess
        • 2.3.2 Technology Readiness Levels
        • 2.3.3 Constraints and Laws of Robotics
    • 3. Ecological Connections
      • 3.1 Organisms and Environments
        • 3.1.1 Consumers and Resources
        • 3.1.2 Niches and Fitness Sets
      • 3.2 Interactions
        • 3.2.1 Fecundity and Survival
        • 3.2.2 Competition
        • 3.2.3 Predators and Parasites
        • 3.2.4 Social Behaviors
      • 3.3 Ecologically Inspired Constraints
        • 3.3.1 Ideal Free Distributions
        • 3.3.2 Competitive and Cooperative Interactions
        • 3.3.3 Thermoregulation and Task Persistification
        • 3.3.4 Towards Robot Ecology
  • II. Constraint-Based Control
    • 4. Constraints and Barriers
      • 4.1 Forward Invariance
        • 4.1.1 Collision-Avoidance
        • 4.1.2 Remaining Safe Forever
        • 4.1.3 Nagumo and the Comparison Lemma
      • 4.2 Control Barrier Functions
        • 4.2.1 Optimization-Based Control
        • 4.2.2 Further Considerations
        • 4.2.3 Survivability Constraints
      • 4.3 Collision-Avoidance
        • 4.3.1 Centralized Safety Barriers
        • 4.3.2 Decentralized Safety Barriers
      • 4.4 Safe Learning
        • 4.4.1 Learning Barrier Functions
        • 4.4.2 Applications to Aerial Robotics
    • 5. Persistification of Robotic Tasks
      • 5.1 Energy Dynamics
        • 5.1.1 Environmental Interactions
        • 5.1.2 Task Persistification
      • 5.2 Variations on the CBF Theme
        • 5.2.1 High Relative Degree Barrier Functions
        • 5.2.2 Time Varying Barrier Functions
        • 5.2.3 Solving the Persistification Problem
      • 5.3 Environmental Monitoring
        • 5.3.1 Exploration
        • 5.3.2 Coverage
    • 6. Composition of Barrier Functions
      • 6.1 Boolean Composition
        • 6.1.1 Disjunctions and Conjunctions
        • 6.1.2 Secondary Operations
      • 6.2 Non-Smooth Barrier Functions
        • 6.2.1 Generalized Gradients
        • 6.2.2 Set-Valued Lie Derivatives
      • 6.3 Min/Max Barrier Functions
        • 6.3.1 Boolean Composition of Barrier Functions
        • 6.3.2 Navigation Example
      • 6.4 Connectivity-Preserving Coordinated Control
        • 6.4.1 Composite Safety and Connectivity Barrier Functions
        • 6.4.2 Maintaining Dynamic Connectivity Graphs
  • III. Robots in the Wild
    • 7. Robot Ecology
      • 7.1 Constraints From Behavioral Ecology
        • 7.1.1 Constituent Constraints
        • 7.1.2 Survivability Constraints
      • 7.2 Goal-Driven Behaviors
        • 7.2.1 From Gradient Descent to Barrier-Based Descent
        • 7.2.2 Costs as Constraints
        • 7.2.3 Finite-Time Performance
      • 7.3 Goal-Driven Multi-Robot Systems
        • 7.3.1 Formation and Coverage Control Revisited
        • 7.3.2 Sequential Composition of Behaviors
      • 7.4 Putting It All Together
        • 7.4.1 A Purposeful Yet Safe Expenditure of Energy
        • 7.4.2 The End Game
    • 8. Environmental Monitoring
      • 8.1 Monitoring in Natural Environments
        • 8.1.1 Biodiversity
        • 8.1.2 Microclimates and Ecological Niche Models
        • 8.1.3 Under the Tree Canopies
      • 8.2 Wire-Traversing Robots
        • 8.2.1 Design Considerations
        • 8.2.2 Mechanical Design
      • 8.3 The SlothBot
        • 8.3.1 Motion Planning and Control
        • 8.3.2 Long-Duration Deployment
    • 9. Autonomy-on-Demand
      • 9.1 Recruitable Robots
        • 9.1.1 Task Specifications
        • 9.1.2 Remote Access Control in the Robotarium
      • 9.2 The Robotarium: An Autonomy-on-Demand Multi-Robot Platform
        • 9.2.1 The Impetus Behind Remote-Access Robotics
        • 9.2.2 Testbed Design
        • 9.2.3 Safety and Robust Barrier Functions
      • 9.3 Remote Experimentation
        • 9.3.1 Submission Process
        • 9.3.2 The Robotarium Userbase
        • 9.3.3 User Experiments
        • 9.3.4 Case Studies
    • Bibliography
    • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика