Электронная библиотека Финансового университета

     

Детальная информация

Molecular breeding in wheat, maize and sorghum: strategies for improving abiotic stress tolerance and yield / Mohammad Anwar Hossain, Mobashwer Alam, Saman Seneweera, Sujay Rakshit, Robert J Henry. — 1 online resource — <URL:http://elib.fa.ru/ebsco/2959385.pdf>.

Дата создания записи: 28.02.2021

Тематика: Plant molecular genetics.; Wheat — Molecular genetics.; Corn — Molecular genetics.; Sorghum — Molecular genetics.; Corn — Molecular genetics.; Plant molecular genetics.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

"This book covers the latest understanding of molecular and genetic bases of abiotic stress tolerance and yield improvement of wheat, maize and sorghum, to develop strategies for improved stress tolerance and enhanced crop productivity"--.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Cover
  • Molecular Breeding in Wheat, Maize and Sorghum
  • Copyright
  • Contents
  • About the Editors
  • Contributors
  • Preface
  • 1 Recent Understanding on Molecular Mechanisms of Plant Abiotic Stress Response and Tolerance
    • 1.1 Introduction
    • 1.2 Molecular Mechanisms of Abiotic Stress Response and Tolerance
      • 1.2.1 Drought stress
        • Downstream drought response targets that trigger tolerance in wheat, maize and sorghum
      • 1.2.2 Salt stress
        • Molecular mechanisms of Na+ entry and response in plants
        • Plant adaptation strategies to internal Na+ pools
    • 1.3 Conclusion
    • References
  • 2 Breeding Strategies to Enhance Abiotic Stress Tolerance and Yield Improvement in Wheat, Maize and Sorghum
    • 2.1 Introduction
    • 2.2 Molecular Breeding for Wheat Improvement
      • 2.2.1 Molecular markers in wheat
      • 2.2.2 Functional wheat genomics
      • 2.2.3 Marker-assisted wheat breeding for improving quality traits
        • Grain hardness
        • Gluten
        • Wheat–rye translocation and falling number
    • 2.3 Molecular Breeding for Maize Improvement
      • 2.3.1 Molecular markers and mapping populations in maize
      • 2.3.2 Opportunities for enhancing the level and scope of molecular marker- assisted breeding in maize
    • 2.4 Molecular Breeding for Sorghum Improvement
      • 2.4.2 Characterization and analysis of genetic diversity in sorghum
        • Morphological characterization
        • Characterization using molecular markers as new technologies
    • 2.5 Breeding Strategies to Enhance Abiotic Stress Tolerance in Crops
      • 2.5.1 Use of forward genetics to elucidate mechanisms of abiotic stress tolerance
      • 2.5.2 Phenomics technologies assist the genetic analysis of abiotic stress tolerance
    • 2.6 Conclusions
    • Acknowledgement
    • References
  • 3 Recent Advancement of Molecular Breeding for Improving Salinity Tolerance in Wheat
    • 3.1 Introduction
    • 3.2 Key Mechanisms Controlling Salt Signalling Tolerance
    • 3.3 Conventional Breeding for Salt Tolerance in Wheat
    • 3.4 Impact of High-Throughput Phenotyping and Genotyping in Salt Tolerance
    • 3.5 Wheat Breeding Challenge: Integration of Physiological-Trait Breeding and Molecular Breeding
    • 3.6 Conclusion and Perspectives
    • Acknowledgement
    • References
  • 4 Genomics and Molecular Physiology for Improvement of Drought Tolerance in Wheat
    • 4.1 Introduction
    • 4.2 Understanding the Complexity of Drought Tolerance in Wheat
      • 4.2.1 Morphological response
      • 4.2.2 Biochemical response
      • 4.2.3 Physiological response
      • 4.2.4 Molecular response
        • Photosynthesis process
        • Water-related traits
    • 4.3 Breeding for Drought Tolerance in Wheat
      • 4.3.1 Traditional breeding approaches
        • Utilization of wheat genetic resources for development of drought resistance
      • 4.3.2 Genomics-assisted breeding for drought tolerance in wheat
        • DNA markers associated with drought tolerance
        • Quantitative trait loci responsible for drought tolerance
        • Genome-wide analysis of drought tolerance
        • Transgenic technology for enhancing drought signalling
        • Omics approaches for drought tolerance
    • 4.4 Conclusion and Future Perspectives
    • References
  • 5 Molecular Breeding for Improving Heat Stress Tolerance in Wheat
    • 5.1 Introduction
    • 5.2 Wheat Responses to Heat Stress
      • 5.2.1 Morphological and growth responses
      • 5.2.2 Cellular structure and physiological response
    • 5.3 Molecular-Genetic Bases of Heat Response in Wheat
      • 5.3.1 Multi-omics research on heat stress response
      • 5.3.2 Mapping quantitative trait loci related to heat tolerance
      • 5.3.3 Functional genes in response to heat stress
      • 5.3.4 Improving heat tolerance of wheat by comprehensive strategies
    • 5.4 Conclusion
    • References
  • 6 Molecular Breeding for Improving Waterlogging Tolerance in Wheat
    • 6.1 Introduction
    • 6.2 Soil Waterlogging Reduces Wheat Grain Yield
    • 6.3 Effect of Waterlogging on the Soil Environment
    • 6.4 Effects of Anaerobic Conditions on Plant Metabolism
    • 6.5 Plant Adaptations to Soil Waterlogging and Flooding
    • 6.6 Genetic Control of Macronutrient Uptake and Transport
      • 6.6.1 Nitrogen
      • 6.6.2 Phosphorus
      • 6.6.3 Potassium
    • 6.7 Genetic Control of Micronutrient and Plant Non-Essential Element Uptake and Transport
      • 6.7.1 Aluminium
      • 6.7.2 Iron
      • 6.7.3 Sodium
      • 6.7.4 Manganese
      • 6.7.5 Other micronutrients
    • 6.8 Other Quantitative Trait Loci and Genes Associated with Waterlogging Tolerance
    • 6.9 Sources of Genetic Variation: Bread Wheat
    • 6.10 Sources of Genetic Variation: Wheat Relative Species
    • 6.11 Use of Physiology toUnderst and Waterlogging and Other Complex Traits
    • 6.12 Genomic Selection versus Marker-Assisted Selection for Genetic Improvement
    • 6.13 Brief Genomic Selection Methodology Overview
    • 6.14 Statistical Methods to Predict Genomic Estimated Breeding Values
    • 6.15 Genomic Selection for Quantitative Traits in Wheat and Other Crops
    • 6.16 Genomic Selection for Abiotic Stress Tolerance Traits
    • 6.17 Genomic Selection for Waterlogging Stress Tolerance
    • 6.18 Doubled Haploids for Winter Wheat
    • 6.19 Putting It All Together: A Pipeline for Genetic Improvement of Waterlogging Tolerance in Wheat
    • References
  • 7 Molecular Breeding for Improving Aluminium Resistance in Wheat
    • 7.1 Introduction
    • 7.2 Screening Wheat Root Growth under Aluminium Stress
    • 7.3 Efflux of Organic Acid Anions as the Major Mechanisms of Aluminium Resistance in Wheat
    • 7.4 Organic Acid Transporters in Wheat
    • 7.5 Genes Coding for Organic Acid Transporters in Wheat
    • 7.6 PCR to Detect TaALMT1 and TaMATE1B Promoter Alleles
    • 7.7 The Importance of Citrate Efflux for Greater Aluminium Resistance in Bread Wheat
    • 7.8 The Search for Other Genes Associated with Root Growth of Wheat under Aluminium Stress
    • 7.9 Exploiting Wheat Wild Relatives
    • 7.10 Transgenic Approach to Increase Aluminium Resistance in Hexaploid Wheat
    • 7.11 Improving Aluminium Resistance of Durum Wheat
    • 7.12 Conclusions and Outlook
    • References
  • 8 Molecular Breeding for Enhancing Iron and Zinc Content in Wheat Grains
    • 8.1 Introduction
    • 8.2 Importance of Iron and Zinc in Daily Life
    • 8.3 Wheat: The Most Important Staple Crop
    • 8.4 Location of Iron and Zinc in Wheat Grains and Difficulties Associated with It
    • 8.5 Transport of Iron and Zinc from Roots to Seed
    • 8.6 Biofortification of Wheat for Essential Micronutrients
    • 8.7 Breeding Strategies to Increase Bioavailable Forms of Iron and Zinc
    • 8.8 Genetic Variation
    • 8.9 Genotype × Environment Interaction
    • 8.10 Quantitative Trait Locus Mapping
    • 8.11 Novel Experiments using Sequence Data Resources
    • 8.12 Marker-Assisted Breeding
    • 8.13 Classical Breeding
    • 8.14 Transgenic Strategies to Increase Bioavailable Forms of Iron and Zinc
    • 8.15 Agronomic Strategies for Iron and Zinc Improvement in Wheat
    • 8.16 Challenges in Wheat Iron and Zinc Biofortification
    • 8.17 Conclusions and Future Directions
    • Acknowledgement
    • References
  • 9 Recent Advancements of Molecular Breeding and Functional Genomics for Improving Nitrogen-, Phosphorus- and Potassium-Use Efficiencies in Wheat
    • 9.1 Introduction
      • 9.1.1 The importance and implications of nitrogen
      • 9.1.2 The importance and implications of phosphorus
      • 9.1.3 The importance and implications of potassium
    • 9.2 Application of Molecular Breeding for Improving Nutrient-Use Efficiency in Wheat
    • 9.3 Identification of Quantitative Trait Loci for Improving Nitrogen-Use Efficiency in Wheat
    • 9.4 Identification and Characterization of Genes Involved in Nitrogen Transport
    • 9.5 Identification of Quantitative Trait Loci for Improving Phosphorus- Use Efficiency of Wheat
    • 9.6 Identification and Functional Characterization of Genes Involved in Phosphorus Transport
    • 9.7 Identification of Quantitative Trait Loci for Improving Potassium- Use Efficiency in Wheat
    • 9.8 Identification and Functional Characterization of Potassium Transporters
    • 9.9 Improving Nitrogen-, Phosphorus- and Potassium-Use Efficiencies Through Transgenic Approach
    • 9.10 Impact of Climate Change on Wheat Nitrogen, Phosphorus and Potassium Management
    • 9.11 Conclusions and Outlook
    • Acknowledgement
    • References
  • 10 Molecular Breeding for Improving Yield in Wheat: Recent Advances and Future Perspectives
    • 10.1 Introduction
    • 10.2 Wheat Genetics and Genetic Resources
    • 10.3 Yield Components and Harvest Index of Wheat
    • 10.4 Conventional Approaches in Breeding Wheat for Yield
    • 10.5 Wheat Molecular Breeding
      • 10.5.1 Molecular markers
      • 10.5.2 High-throughput genotyping
      • 10.5.3 High-throughput phenotyping (phenomics)
    • 10.6 Quantitative Trait Locus/Genome Mapping and Marker- Assisted Selection
    • 10.7 Marker-Assisted Backcrossing
    • 10.8 Genomics in Wheat Breeding
      • 10.8.1 Association/linkage disequilibrium mapping in wheat
      • 10.8.2 Comparative genomics in wheat breeding
      • 10.8.3 Genomic selection
      • 10.8.4 Ideotype breeding and systems modelling
    • 10.9 Other Molecular Technologies and Next-Generation Approaches in Wheat Breeding
    • 10.10 Future Perspectives and Conclusions
    • References
  • 11 Tools for Transforming Wheat Breeding: Genomic Selection, Rapid Generation Advance and Database-Based Decision Support
    • 11.1 Introduction
    • 11.2 Genomic Selection
    • 11.3 Rapid Generation Advance
    • 11.4 Breeding Data Management
      • 11.4.1 Databases and associated breeding information management systems
      • 11.4.2 Databases and connection to breeding software
      • 11.4.3 Comprehensive breeding systems; custom-built breeding databases and software
      • 11.4.4 Genomic Open-source Breeding Informatics Initiative
    • 11.5 Conclusion
    • References
  • 12 CRISPR-Mediated Gene Editing in Wheat for Abiotic Stress Tolerance
    • 12.1 Introduction
    • 12.2 Advances in Genome Editing Technology
      • 12.2.1 The wheat genome as a target for genome editing
      • 12.2.2 Disrupting and replacing functional sequences in wheat
      • 12.2.3 Editing efficiency and regeneration
    • 12.3 Applications of Genome Editing to Improve Abiotic Stress Tolerance
      • 12.3.1 Drought
      • 12.3.2 Metal toxicity
    • 12.4 Crop Wild Relatives are a Source of Variation for Breeding
    • 12.5 Conclusion and Perspective
    • References
  • 13 Application of Pangenomics for Wheat Molecular Breeding
    • 13.1 Introduction
      • 13.1.1 What is a pangenome?
      • 13.1.2 The first wheat pangenome
      • 13.1.3 Resequencing additional varieties
      • 13.1.4 Scope for future sequencing approaches
        • Bi-directional variant graphs for pangenome assembly
        • Long-read sequencing and genome mapping
        • Tools for pangenome analysis
    • 13.2 Application
      • 13.2.1 Identification of presence/absence variants associated with stress
      • 13.2.2 Identification of presence/absence variants associated with yield
      • 13.2.3 Potential to bring variable genes in from related species
    • 13.3 Conclusion and Future Perspective
    • References
  • 14 Recent Advancement of Molecular Understanding for Combating Salinity Stress in Maize
    • 14.1 Introduction
    • 14.2 Tolerance to Salinity-Induced Osmotic Stress in Maize
      • 14.2.1 Perception and signalling of salinity-induced osmotic stress in maize
      • 14.2.2 Abscisic acid-mediated response to salinity-induced osmotic stress in maize
      • 14.2.3 Accumulations of osmoregulatory substances promote salt tolerance in maize
    • 14.3 Sodium Homeostasis under Salinity Stress in Maize
      • 14.3.1 The maintenance of Na+ homeostasis is essential for maize salt tolerance
      • 14.3.2 Regulation of Na+ homeostasis at soil–cell interface in maize
      • 14.3.3 Regulation of root-to-shoot Na+ delivery at the cell–xylem vessel interface in maize
      • 14.3.4 Na+ translocation within and between tissues in maize
      • 14.3.5 Na+ compartmentalization into tonoplast in maize
    • 14.4 Potassium Homeostasis under Salinity Conditions in Maize
    • 14.5 Regulation of Chloride Homeostasis in Maize
      • 14.5.1 Maize is sensitive to high concentration of Cl–
      • 14.5.2 Current understanding of Cl– transporters in maize
        • Peptide transporter proteins (NPFs)
        • Slow-type anion channel-associated homologues (SLAHs)
        • Chloride channels (CLCs)
        • Aluminium-activated malate transporters (ALMTs)
        • Multidrug and toxic compound extrusion (MATE) family transporters
        • Cation/chloride cotransporters (CCCs)
    • 14.6 Other Understandings of Maize Salt Tolerance
    • 14.7 Future Issues for Breeding Salt-Tolerant Maize
    • References
  • 15 Isolation of Genes/Quantitative Trait Loci for Drought Stress Tolerance in Maize
    • 15.1 Introduction
    • 15.2 Target Traits for Drought Tolerance
    • 15.3 Target Environment for Evaluation
    • 15.4 Phenomics for Drought Stress Screening
    • 15.5 Genomics-Assisted Breeding Approach: Boon for Drought Tolerance
    • 15.6 Transgenic Technology
    • 15.7 Conclusion
    • References
  • 16 The Genetic Architecture and Breeding Towards Cold Tolerance in Maize: Review
    • 16.1 Introduction
    • 16.2 Maize Cold Tolerance and Global Adaptation
    • 16.3 Maize Germplasm for Cold Tolerance
    • 16.4 Maize Mutants for Cold Tolerance
    • 16.5 Linkage Analysis
    • 16.6 Genome-Wide Association Studies
    • 16.7 Gene Expression Profiling
    • 16.8 Genomic Selection
    • 16.9 Perspective
    • Acknowledgement
    • References
  • 17 Physiological and Molecular Mechanisms Underlying Excess Moisture Stress Tolerance in Maize: Molecular Breeding Opportunities to Increase Yield Potential
    • 17.1 Introduction
    • 17.2 Impact of Excess Moisture Stress on Maize Plants
      • 17.2.1 Water deficit
      • 17.2.2 Nutrient imbalance
      • 17.2.3 Plant functions
    • 17.3 Phenological Adaptations and Physiological Mechanisms Leading to Excess Moisture Stress Tolerance in Maize
    • 17.4 Molecular Signature of Excess Moisture Stress Tolerance
    • 17.5 Genetic Studies on Excess Moisture Stress Tolerance in Maize
    • 17.6 Molecular Breeding for Excess Moisture Tolerance
    • 17.7 Conclusion
    • Endnote
    • References
  • 18 Recent Molecular Breeding Advances for Improving Aluminium Tolerance in Maize and Sorghum
    • 18.1 Introduction
    • 18.2 Effects of Aluminium Toxicity in Plants
    • 18.3 Genetic Control of Aluminium Tolerance in Sorghum and Maize
      • 18.3.1 Sorghum
      • 18.3.2 Maize
    • 18.4 Molecular Tools for Marker-Assisted Breeding
      • 18.4.1 Sorghum
      • 18.4.2 Maize
    • 18.5 Molecular Breeding Strategies to Improve Aluminium Tolerance in Sorghum and Maize
    • 18.6 Conclusions and Remarks
    • References
  • 19 Physiological and Molecular Interventions for Improving Nitrogen-Use Efficiency in Maize
    • 19.1 Introduction
    • 19.2 Importance of Nitrogen in Plant Growth and Development
    • 19.3 What is Nitrogen-Use Efficiency and How to Manage It?
    • 19.4 Traits Influencing Nitrogen-Uptake Efficiency
      • 19.4.1 Root system architecture
      • 19.4.2 Root nitrogen transporter system
      • 19.4.3 Interaction with microorganisms
    • 19.5 Traits Influencing Nitrogen-Utilization Efficiency
      • 19.5.2 Canopy photosynthesis per unit of nitrogen
    • 19.6 Identification and Use of Quantitative Trait Loci Related to Nitrogen-Use Efficiency
    • 19.7 Identification of Nitrogen- Responsive Genes
    • 19.8 Nitrogen Signalling and Transduction for Improving Nitrogen-Use Efficiency
    • 19.9 Conclusion
    • References
  • 20 Recent Advancement in Molecular Breeding for Improving Nutrient-Use Efficiency in Maize
    • 20.1 Introduction
    • 20.2 What is Nutrient-Use Efficiency?
    • 20.3 Nitrogen and Phosphorus: Two Limiting Nutrients for Maize Productivity
    • 20.4 General Regulation of Nitrogen and Phosphorus Use in Maize
      • 20.4.1 Uptake, translocation and assimilation of nitrogen and phosphorus
      • 20.4.2 Molecular regulators
      • 20.4.3 Nitrogen, phosphorus and carbon trade-off
    • 20.5 Strategies for Molecular Breeding of Nutrient-Use Efficiency in Maize
      • 20.5.1 Genetic diversity of maize under low nitrogen and phosphorus availability
      • 20.5.2 Quantitative trait locus mapping and genome-wide association studies
      • 20.5.3 Transgenic approach to improve nitrogen- and phosphorus-use efficiencies
    • 20.6 Phenotyping: An Important Component of Molecular Breeding
      • 20.6.1 Root phenotyping
    • 20.7 Potential of Genome Editing Approach to Improve Maize Productivity and Performance
    • 20.8 Challenges and Future Perspectives
    • References
  • 21 Molecular Breeding for Increasing Nutrition Quality in Maize: Recent Progress
    • 21.1 Introduction
    • 21.2 Maize and Its Significance
    • 21.3 Improvement of Protein Quality
      • 21.3.1 Breeding for high lysine and tryptophan
      • 21.3.2 Marker-assisted selection for high lysine and tryptophan
    • 21.4 Improvement of Provitamin A
      • 21.4.1 Breeding for high provitamin A
      • 21.4.2 Marker-assisted selection for provitamin A
    • 21.5 Improvement of Vitamin E
      • 21.5.1 Breeding for high vitamin E
      • 21.5.2 Marker-assisted selection for vitamin E
    • 21.6 Reduction of Phytate
      • 21.6.1 Breeding for low phytate
      • 21.6.2 Marker-assisted selection for low phytate
    • 21.7 Reduction of Glycaemic Index
      • 21.7.1 Breeding for high amylose
      • 21.7.2 Marker-assisted selection for high amylose
    • 21.8 Breeding for Multi-Nutrient Maize
    • 21.9 Impact of Biofortified Maize in Humans
    • 21.11 Challenges and Future Prospects
    • References
  • 22 Molecular Breeding for Improving Yield in Maize: Recent Advances and Future Perspectives
    • 22.1 Introduction
    • 22.2 Plant Breeding and Its Underlying Molecular Basis
    • 22.3 The Molecular Technologies Developed for Enhanced Plant Breeding
      • 22.3.1 Marker-assisted selection
      • 22.3.2 Genetic engineering
      • 22.3.3 RNA interference
      • 22.3.4 Gene or genome editing
      • 22.3.5 Genomic selection
      • 22.3.6 Gene-based breeding
    • 22.4 Recent Advances in Molecular Breeding for Maize Yield
      • 22.4.1 Marker-assisted selection
      • 22.4.2 Genetic engineering
      • 22.4.3 RNA interference
      • 22.4.4 Gene or genome editing
      • 22.4.5 Genomic selection
      • 22.4.6 Gene-based breeding
    • 22.5 Conclusions and Perspectives
    • References
  • 23 CRISPR-Mediated Genome Editing in Maize for Improved Abiotic Stress Tolerance
    • 23.1 Introduction
    • 23.2 Significance of Maize and Global Status
    • 23.3 Impact of Abiotic Stresses on Maize
      • 23.3.1 Drought and heat stress
      • 23.3.2 Waterlogging stress
      • 23.3.3 Cold stress
    • 23.4 Genome Editing
    • 23.5 Types of Genome Editing Tools
      • 23.5.1 Zinc-finger nucleases (ZFNs)
      • 23.5.2 Transcription activator-like effector nucleases (TALENs)
      • 23.5.3 CRISPR/Cas9 system
    • 23.6 Applications of CRISPR/Cas9 for Abiotic Stress Tolerance in Maize
    • 23.7 Conclusion and Future Prospects
    • References
  • 24 Molecular Breeding for Combating Salinity Stress in Sorghum: Progress and Prospects
    • 24.1 Introduction
    • 24.2 Germplasm for Salt Tolerance
    • 24.3 Salinity Response in Growth Stages
    • 24.4 Salinity Response in Morpho-Physiological Traits
    • 24.5 Traditional Breeding for Developing Salinity-Tolerant Varieties
    • 24.6 Progress and Prospects of Molecular Breeding
    • 24.7 Conclusion
    • References
  • 25 Quantitative Trait Locus Mapping and Genetic Improvement to Strengthen Drought Tolerance in Sorghum
    • 25.1 Introduction
    • 25.2 Role of Molecular Markers
    • 25.3 Discovery of Quantitative Trait Loci
    • 25.4 Fine Mapping and Positional Cloning of Quantitative Trait Loci
    • 25.5 Candidate Genes and Genetic Engineering Approach
    • 25.6 Use of Core Collections in Genetic Analysis
    • 25.7 Conclusion and Future Prospects
    • References
  • 26 Improving Abiotic Stress Tolerance to Adapt Sorghum to Temperate Climatic Regions
    • 26.1 Introduction
    • 26.2 Origin and Genetic Diversity of Sorghum
    • 26.3 Existing Molecular Tools to Enhance Abiotic Stress Tolerance
    • 26.4 History of Temperate Adaptation in Sorghum
    • 26.5 Potential of Sorghum in Temperate Climates
    • 26.6 Breeding Goals for Sorghum Temperate Adaptation and Their Present State-of-the-Art
      • 26.6.1 Juvenile chilling tolerance
      • 26.6.2 Reproductive chilling tolerance
    • 26.7 Breeding Methods
      • 26.7.1 Enhancements of abiotic stress tolerance via heterosis and hybrid breeding
    • 26.8 Advancement and Use of Genomics and Bioinformatics Approaches
      • 26.8.1 High-throughput genotyping tools
      • 26.8.2 Use of next-generation-sequencing genotyping techniques in sorghum
      • 26.8.3 Transcriptome analysis
      • 26.8.4 Genetic transformation
      • 26.8.5 TILLING
    • 26.9 Future Prospects
    • References
  • 27 Isolation of Quantitative Trait Loci/Gene(s) Conferring Cadmium Tolerance in Sorghum
    • 27.1 Introduction
    • 27.2 A Brief Outlook on Sorghum Genome
    • 27.3 Cadmium Transport and Tolerance in Plants
      • 27.3.1 Cadmium uptake genes in roots
      • 27.3.2 Translocation of cadmium from roots to shoots
      • 27.3.3 Detoxification and sequestration of cadmium in plants
    • 27.4 Methods in Identification of Quantitative Trait Loci
    • 27.5 Recent Quantitative Trait Loci Studies in Sorghum
    • 27.6 Cadmium-Related Quantitative Trait Locus Studies in Sorghum
    • 27.7 Conclusion
    • References
  • 28 Molecular Breeding for Increasing Micronutrient Content in Sorghum
    • 28.1 Introduction
    • 28.2 Genetic Resources
      • 28.2.1 Germplasm collection – core and mini-core collections
      • 28.2.2 Identification of donors
      • 28.2.3 Mapping populations
        • Bi-parental populations
        • Association panels
        • Specialized populations
    • 28.3 Genomic Resources
      • 28.3.1 Genome sequence resources
      • 28.3.2 DNA marker resources
    • 28.4 Biofortification Through Genomics-Assisted Breeding
    • 28.5 Biofortification Through Genetic Modification
    • 28.6 Future Prospects
    • References
  • 29 Ideotype Breeding for Improving Yield in Sorghum: Recent Advances and Future Perspectives
    • 29.1 Introduction
    • 29.2 Types of Sorghum
    • 29.3 Advances in Sorghum Improvement
      • 29.3.1 India
      • 29.3.2 China
      • 29.3.3 Nigeria
      • 29.3.4 Sudan
      • 29.3.5 The USA
    • 29.4 Challenges for Genetic Improvement
    • 29.5 Ideotype Breeding Types
    • 29.6 Ideotype Breeding in Cereals
    • 29.7 Methodologies for Defining Crop Ideotypes
    • 29.8 Genetics and Breeding for Important Traits in Sorghum
    • 29.9 Ideotype Breeding in Sorghum
      • 29.9.1 Grain sorghum
        • Winter sorghum
      • 29.9.2 High-biomass sorghum
      • 29.9.3 Sweet sorghum
      • 29.9.4 Forage sorghum
    • 29.10 Conclusions and Outlook
    • References
  • Index
  • Back Cover

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика