Электронная библиотека Финансового университета

     

Детальная информация

Materials research foundations ;.
Advanced Applications of Micro and Nano Clay: Biopolymer-Based Composites. — v. 125. / edited by Amir Al-Ahmed and Inamuddin. — 1 online resource. — (Materials Research Foundations). — 7.1 Application of MMT-chitosan based nano-composites in drug release. — <URL:http://elib.fa.ru/ebsco/3296297.pdf>.

Дата создания записи: 04.06.2022

Тематика: Biopolymers.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

Due to their characteristic properties, biodegradable nature and non-toxicity, clay-biopolymer based composites have many applications in such advanced fields as drug release, antimicrobial activities, etc.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Polysaccharide-Fibrous Clay Bionanocomposites and their Applications
    • 1. Introduction
      • 1.1 Cellulose
      • 1.2 Chitin
      • 1.3 Chitosan
    • 2. Modifications of fibrous clays for use as nanofillers
    • 3. Polysaccharides-based bio nanocomposites
    • 4. Preparation of polysaccharide-fibrous clays bio nano-composites
      • 4.1 Direct incorporation of polymers
      • 4.2 In-situ polymerization of monomers
      • 4.3 Polymer-templated clay synthesis
      • 4.3.1 Thin films and coatings
      • 4.3.2 Polyelectrolyte method
      • 4.3.3 Ionotropic gelation
      • 4.3.4 Solvent evaporation
      • 4.3.5 Freezing–thawing method
      • 4.3.6 Electro-spinning
      • 4.3.7 Three-dimensional bio-printing
      • 4.3.8 Preparation of nano-particles
    • 5. Properties of polysaccharide-fibrous clay bionanocomposites
      • 5.1 Mechanical properties
      • 5.2 Water absorption properties
      • 5.3 Intake of heavy metals
      • 5.4 Light barrier properties
      • 5.5 Gas permeation
    • 6. Characterisation of the polysaccharide–fibrous clay bionanocomposites
      • 6.1 Physiochemical characterization of polysaccharides and fibrous clay
      • 6.2 Spectroscopic analysis
    • 7. Applications
      • 7.1 Biomedical applications
      • 7.2 Biocatalytic applications
    • Conclusion
    • References
  • 2
    • Halloysite-Chitosan based Nano-Composites and Applications
    • 1. Introduction
      • 1.1 Clay minerals
      • 1.1.1 Halloysite nanotubes (HNTs)
      • 1.1.2 Structure of HNT
    • 2. Chitosan (CS)
      • 2.1 Properties of chitosan
    • 3. Chitosan derivatives
      • 3.1 Acylated chitosan
      • 3.2 Alkylated chitosan
      • 3.3 Hydrophilic group
      • 3.3.1 Carboxylated chitosan
      • 3.3.2 Quaternary ammonium chitosan
    • 4. Esterified chitosan
    • 5. Application of chitosan-HNTs (CS-HNT) composites
    • Conclusion
    • Reference
  • 3
    • Montmorillonite-Chitosan based Nano-Composites and Applications
    • 1. Introduction
    • 2. Montmorillonite
      • 2.1 Structure
      • 2.2 Properties of MMT
    • 3. Chitosan
      • 3.1 Structure
      • 3.2 Characteristics of chitosan
      • 3.2.1 Degree of deacetylation
      • 3.2.3 Molecular weight
      • 3.2.4 Crystallinity
      • 3.2.5 Particle size and surface area
      • 3.3 Properties of chitosan
      • 3.3.1 Polycationic and solubility
      • 3.3.2 Biocompatibility
      • 3.3.3 Mucoadhesion
      • 3.3.4 Biodegradability
      • 3.3.5 Low toxicity
    • 4. Montmorillonite-chitosan based nano-composites
    • 5. Processing of MMT-chitosan-based nano-composites
      • 5.1 Intercalation of polymer or pre-polymer from solution
      • 5.2 In situ intercalative polymerization
      • 5.3 Melt intercalation
      • 5.4 Solution intercalation
      • 5.5 Template synthesis
      • 5.6 Solvent casting method
      • 5.7 Melt-extrusion method
      • 5.8 Layer-by-layer assembly (LBL) method
    • 6. Various forms of Montmorillonite-chitosan based nano-composites
      • 6.1 Film
      • 6.2 Hydrogel
      • 6.3 Scaffold
    • 7. Important applications of Montmorillonite-chitosan based nano-composites
      • 7.1 Application of MMT-chitosan based nano-composites in drug release
      • 7.2 Application of MMT-chitosan based nano-composites in antimicrobial activities
      • 7.3 Application of MMT-chitosan based nano-composites in wound-healing activities
      • 7.4 Application of MMT-chitosan based nano-composites in tissue engineering
      • 7.5 Application of MMT-chitosan based nano-composites in food packaging
      • 7.6 Application of MMT-chitosan based nano-composites in water treatment process
    • Conclusions
    • References
  • 4
    • Kaolinite-Chitosan based Nano-Composites and Applications
    • 1. Introduction
    • 2. Kaolinite-chitosan composites
    • 3. Applications of kaolinite-chitosan nanocomposites
      • 3.1 Medical applications
      • 3.2 Pharmaceutical applications
      • 3.3 Wastewater and industrial effluent treatment
      • 3.4 Desalination applications
      • 3.5 Food and packaging applications
    • Conclusion
    • References
  • 5
    • Chitosan-Halloysite Nano-Composite for Scaffolds for Tissue Engineering
    • 1. Introduction
    • 2. Scaffolds
      • 2.1 Scaffold requirements
      • 2.1.1 Architecture
      • 2.1.2 Compatibility of cells and tissues
      • 2.1.3 Bioactivity
      • 2.1.4 Mechanical characteristics
      • 2.2 Types of scaffolds
      • 2.2.1 Metal based scaffolds
      • 2.2.2 Ceramic based scaffolds
      • 2.2.3 Polymer based scaffolds
      • 2.2.4 Composite based scaffolds
    • 3. Role of Nanotechnology in scaffolding
      • 3.1 Nanoscaffolds for skin regeneration
      • 3.2 Nanoscaffolds for liver regeneration
      • 3.3 Nanoscaffolds for bone regeneration
    • 4. Use of chitosan – halloysite nanocomposite scaffolds
    • Conclusions
    • References
  • 6
    • Vermiculite Starch-based Nanocomposites and Applications
    • 1. Introduction
    • 2. Starch based clay nanocomposites
    • 3. Properties of vermiculite
      • 3.1 Vermiculite-modified bio nanocomposites
      • 3.2 Basis and division of vermiculite
      • 3.3 Morphologic and material characteristics of vermiculite
    • 4. Varieties and ways of processing of clay nanocomposites
      • 4.1 Preparation techniques for polymer clay nanocomposites
      • 4.2 Solution-blending method
      • 4.3 Melt-blending method
      • 4.4 In-situ polymerization method
    • 5. Processing of vermiculite based composites
    • 6. Vermiculite-modified polymer nanocomposites
    • 7. Mechanistic and thermic properties of nanocomposites
    • 8. Characterization of nanocomposites
      • 9.1 Deletion of pollutants from water/waste water from by starch-vermiculite based nanocomposites
      • 9.2 Packaging applications of starch-vermiculite based nanocomposites
      • 9.3 Flame-retardant applications of starch-vermiculite based nanocomposites
    • Conclusion
    • References
  • 7
    • Halloysite-Starch based Nano-Composites and Applications
    • 1. Introduction
    • 2. Biomedical applications
      • 2.1 Drug/molecular carrier
      • 2.2 Tissue engineering
      • 2.3 Wound dressing
    • 3. Food packaging applications
      • 3.1 As an antimicrobial and antioxidant
      • 3.2 As water vapor barrier
    • 4. Water treatment applications
    • 5. Applications as a catalysts
    • 6. Flame retardant applications
    • References
  • 8
    • Montmorillonite-Starch based Nano-Composites and Applications
    • 1. Introduction
    • 2. Structural features of starch and montmorillonite
      • 2.1 Structural features of starch
      • 2.2 Structural features of montmorillonite
    • 3. Nanocomposite
      • 3.1 Starch-clay nanocomposites
      • 3.2 Montmorillonite-starch nanocomposites
    • 4. Methods of polymer-clay nanocomposite synthesis
      • 4.1 In-situ polymerization process
      • 4.2 Polymer solution intercalation
      • 4.3 Intercalation of melt
    • 5. Nanocomposites characterization techniques
      • 5.1 X-ray diffraction studies
      • 5.2 Transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
    • 6. Applications
      • 6.1 Rheological control agent
      • 6.2 Food packaging
      • 6.3 Biomedical applications of nanocomposites
      • 6.4 Water purification applications
    • Conclusions and prospects
    • Acknowledgment
    • References
  • 9
    • Kaolinite-Starch based Nano-Composites and Applications
    • 1. Introduction
    • 2. Synthesis of kaolinite-starch nano-composites
    • 3. Characterization and properties of kaolinite-starch NC
      • 3.1 X-ray diffraction studies
      • 3.2 Thermal property of kaolinite-starch film
      • 3.3 FT-IR spectral analysis of starch-kaolinite NC
      • 3.4 SEM studies of clay-starch nanocomposite
      • 3.5 Water uptake
    • 4. Applications of kaolinite-starch based nano-composites
      • 4.1 Water remediation using starch-kaolinite nanocomposite
      • 4.2 Films
      • 4.3 Paper making
      • 4.4 Food packaging
      • 4.5 Paper packaging
    • Conclusions
    • References
  • 10
    • Cellulose based Nano-Composites and Applications
    • 1. Introduction
    • 2. Chemistry of cellulose
    • 3. Synthesis and extraction of cellulose
    • 4. Cellulose based nanomaterials and nanocomposites
      • 4.1 Cellulose nanofibers
      • 4.2 Cellulose nanocrystals
      • 4.3 Nanocomposite materials
    • 5. Applications
      • 5.1. Biofuel
      • 5.2 Biomedical and pharmaceutical applications
      • 5.3. Food technology
      • 5.4 Sensors
    • References
  • 11
    • HNT-Cellulose based Nano-Composite and Applications
    • 1. Introduction
    • 2. Bio-nanocomposites
      • 2.1 Structural enhancement
      • 2.2 Environmental benefits
    • 3. Halloysite nanotubes
    • 4. Halloysite biocompatibility
    • 5. HNT-cellulose based nanocomposites
      • 5.1 Carboxymethyl cellulose-based HNT nanocomposite
      • 5.2 Carrageenan based HNT nanocomposites
      • 5.3 Chitosan based HNT polymer
      • 5.4 Functionalized HNT with sodium alginate
      • 5.5 β-galactosidase-halloysite
      • 5.6 PET-halloysite nanotubes
    • 6. Applications
      • 6.1 Food: packing and edible coating
      • 6.2 Coating
      • 6.3 Drug delivery
      • 6.4 Tissue engineering
      • 6.5 Indicator
      • 6.6 Automotive application
    • Conclusion and future perceptive
    • References
  • 12
    • Kaolinite–Cellulose based Nano–Composites and Applications
    • 1. Introduction
    • 2. Inorganic–organic nano–composites
      • 2.1 Nano-structured kaolinite
      • 2.2 Nano-structured cellulose
      • 2.2.1 The role of cellulose-water interaction for its adsorption properties
      • 2.2.2 Manufacturing of nano–cellulose
      • 2.2.2.1 Mechanical treatment
      • 2.2.2.2 Chemical treatment
      • 2.2.2.3 Enzymatic hydrolysis
      • 2.2.3 Challenges to the preparation and application of nano-cellulose
      • 2.3 Kaolinite–cellulose nano-composite
      • 2.3.1 Preparation
      • 2.3.2 Characterization
      • 2.4 Applications of the kaolinite-cellulose nano composite
      • 2.4.1 Wastewater treatment
      • 2.4.2 Drug delivery
      • 2.4.3 Packaging
      • 2.4.4 Flame retardant
      • 2.4.5 Printed electronics
    • Conclusions
    • References
  • 13
    • Montmorillonite-Cellulose based Nano-Composites and Applications
    • 1. Introduction
    • 2. Characterization
    • 3. Factors affecting properties of MMT-cellulose based nano-composites
    • 4. Methods of preparation of montmorillonite-cellulose based nano-composites
      • 4.1 In-situ method
      • 4.2 Ex-situ method or immersion method
    • 5. Application
      • 5.1 As adsorbents of pollutants
      • 5.2 Biomedical application
      • 5.3 As superior bio-based plastic material with gas permeability and flame retardant behavior:
    • Conclusion
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика