Электронная библиотека Финансового университета

     

Детальная информация

Reviews in mineralogy and geochemistry ;.
Spectroscopic methods in mineralogy and materials sciences. — Volume 78. / editors, Grant S. Henderson, Daniel R. Neuville, Robert T. Downs. — 1 online resource. — (Reviews in Mineralogy and Geochemistry). — <URL:http://elib.fa.ru/ebsco/935620.pdf>.

Дата создания записи: 05.02.2016

Тематика: Mineralogy, Determinative.; Spectrum analysis.; Minerals — Spectra.; Materials — Spectra.; Materials science.; Raman spectroscopy.; X-ray spectroscopy.; Infrared spectroscopy.; Ultraviolet spectroscopy.; Luminescence spectroscopy.; Infrared spectroscopy.; Luminescence spectroscopy.; Materials science.; Materials — Spectra.; Mineralogy, Determinative.; Minerals — Spectra.; Raman spectroscopy.; Spectrum analysis.; Ultraviolet spectroscopy.; X-ray spectroscopy.; SCIENCE / Chemistry / Analytic

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Table of Contents
  • 1. Modern X-ray Diffraction Methods in Mineralogy and Geosciences
    • INTRODUCTION
    • GENERAL ASPECTS
      • Brief introduction to X-ray diffraction theory
      • Ideal structures, real structures, liquids
      • Information obtained from X-ray diffraction experiments
      • X-ray: characteristics, sources, choice
    • X-RAY DIFFRACTION TECHNIQUES
      • Single crystal monochromatic diffraction (SXD)
      • Laue method
      • Powder diffraction
      • Peak and whole pattern fitting
      • The atomic pair distribution function technique (PDF)
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 2. Fundamentals of XAFS
    • INTRODUCTION
    • X-RAY ABSORPTION AND FLUORESCENCE
    • A SIMPLE THEORETICAL DESCRIPTION OF XAFS
      • A rough explanation of the EXAFS equation
      • The EXAFS ?(E) is proportional to the amplitude of the scattered photoelectron at the absorbing atom
      • ?(k): The inelastic mean free path
      • S : intrinsic losses
      • Multiple scattering of the photoelectron
      • Disorder terms and g(R)
      • Discussion
    • XAFS MEASUREMENTS: TRANSMISSION AND FLUORESCENCE
      • Transmission XAFS measurements
      • Fluorescence and electron yield XAFS measurements
      • Self-absorption (or over-absorption) of fluorescence XAFS
      • Deadtime corrections for fluorescence XAFS
    • XAFS DATA REDUCTION
      • Pre-edge subtraction and normalization
      • Background subtraction
      • EXAFS Fourier transforms
    • XAFS DATA MODELING
      • Running and using FEFF for EXAFS calculations
      • First-shell fitting
      • Fit statistics and estimated uncertainties
      • Second-shell fitting
    • REFERENCES
  • 3. X-ray Absorption Near-Edge Structure (XANES) Spectroscopy
    • PREFACE
    • INTRODUCTION
      • Interaction of X-rays with matter
      • Binding energy
      • Single electron excitation approximation and selection rules
      • Calculations of XANES spectra
    • EXPERIMENTAL ASPECTS OF XANES
      • Doing a XANES experiment at a beamline
      • Data reduction
    • XANES DETECTION MODES
      • Transmission detection of XANES
      • Electron yield detection of XANES
      • Fluorescence yield detection of XANES
      • Partial Fluorescence Yield detection of XANES
      • Electron energy loss spectroscopy and X-ray Raman
      • XANES microscopy
    • XANES ANALYSIS OF METAL K-EDGES
      • Special energy positions of X-ray absorption edges
      • The pre-edge region
      • The edge region and peaks at higher energies in the XANES region
      • XANES analysis of metal L-edges
      • Multiplet analysis of L-edges
    • QUALITATIVE SPECTRAL ANALYSIS OF THE L-EDGES
      • Energy shifts
      • Intensities of the L-edges
      • The branching ratio
      • Polarization dependence and XMCD
    • XANES ANALYSIS OF LIGAND K-EDGES
    • APPLICATIONS OF XANES IN MINERALOGY AND GEOCHEMISTRY
      • Transition metals: K-edges
      • Transition metals: L-edges
      • Silicon and aluminum K- and L-edges
      • Alkalis (Li, Na, K, Rb, Cs)
      • Alkaline-Earths (Be, Ca, Mg, Sr, Ba)
      • Ligand edges (C, O, B, S, P)
    • SOME EXAMPLES OF STUDIES UTILIZING XANES
      • Assessing trace element substitution in minerals: Cerium speciation (Ce3+/Ce4+) in Ti-rich minerals
      • Assessing changes in oxidation state of Nb and Ta with varying fO2 at 1.5 GPa as a possible explanation for the negative Nb/Ta anomaly or “arc signature” of melts
      • In situ high-temperature determination of Cr oxidation state in basaltic melts: A novel XANES furnace design
      • The behavior of Br in CO2-bearing fluids in low-temperature geological settings: A Br K-edge study on synthetic fluid inclusions
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 4. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-ray Raman Scattering at High Pressure
    • INTRODUCTION
    • BRIEF REMARKS ON THEORETICAL BACKGROUNDS AND XRS EXPERIMENTS AT HIGH PRESSURE
      • Brief theoretical backgrounds
      • Comparison with other core-electron excitation spectroscopy and traditional experimental probes at high pressure
      • XRS experiments
    • PRESSURE-INDUCED STRUCTURAL CHANGES IN CRYSTALLINE AND AMORPHOUS EARTH MATERIALS: INSIGHTS FROM X-RAY RAMAN SCATTERING
      • Application of K-edge XRS to materials under high pressure
      • Insights from quantum chemical calculations
    • REMAINING CHALLENGES AND OUTLOOK: APPLICATIONS OF NEW K-, L-, M-EDGE XRS, XRS WITH MOMENTUM TRANSFER, IN SITU HIGHTEMPERATURE AND HIGH-PRESSURE XRS STUDY FOR MULTI-COMPONENTS GLASSES
      • Application of L- and M-edge XRS techniques to oxides and silicates under pressure
      • Application of XRS technique to multi-component oxide glasses under pressure
      • Application of new K-edges (elements in the 3rd row of the periodic table) and momentum transfer XRS to crystals under pressure
      • In situ high-temperature and high-pressure XRS studies
      • Outlook and prospects
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 5. Luminescence Spectroscopy
    • INTRODUCTION
    • THE TYPES AND PHYSICAL PROCESSES OF LUMINESCENCE
      • Luminescence
      • Fluorescence
      • Phosphorescence
      • Thermoluminescence
      • Cathodoluminescence
      • X-ray excited optical luminescence
      • Activators, sensitizers, and quenchers
      • Emission and excitation spectra
      • Semiconductor vs. insulator models
      • Luminescence in organic molecules and structures
      • Total Luminescence Spectra
    • SPECIFIC LUMINESCENCE METHODOLOGY AND APPLICATIONS
      • Time-gated laser excitation and emission techniques
    • EXAMPLES OF APPLICATIONS
      • Activator determination
      • Site occupancy and partitioning
      • Organic-derived luminescence
      • Cathodoluminescence techniques
      • Scanning cathodoluminescence microscopy
    • APPLICATIONS
      • Quartz
      • Feldspars
      • Zircon
      • Carbonates
      • Apatite
      • Thermoluminescence techniques
      • Applications
      • Developing areas for luminescence applications
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 6. Analytical Transmission Electron Microscopy
    • INTRODUCTION
    • INTRODUCTION TO ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY (TEM)
      • Basic design of transmission electron microscopes (TEM)
      • Interactions between the electron beam and the specimen
      • The specimen
      • Recent developments in analytical TEM
    • ELEMENTAL QUANTIFICATION – EDX AND EELS
      • EDX
      • Example of the practical application of EDX: clay minerals
      • EELS
    • EEL SPECTROMETRY
      • EEL low-loss spectroscopy
      • EELS core-loss fine structure
    • EDX AND EELS IMAGING
    • EXAMPLE OF THE PRACTICAL APPLICATION OF EELS: EELS OF MANGANESE IN MINERALS AND ENVIRONMENTAL HEALTH
      • Introduction
      • Analytical considerations for EELS determination of manganese valence
      • Near edge structure of Mn M2,3-edge
      • Near edge structure of Mn L2,3-edge
      • Quantification of valence by L2,3-ELNES
      • Beam damage
      • Applications
    • GENERAL APPLICATION OF EELS, SAED AND EDX
      • Use of (S)TEM to assess transport and retardation mechanisms of trace metal contaminants
      • Developments in TEM specimen preparation
      • Developments in analyzing poorly crystalline, beam sensitive materials
    • CONCLUSIONS
    • REFERENCES
  • 7. High Resolution Core- and Valence-Level XPS Studies of the Properties (Structural, Chemical and Bonding) of Silicate Minerals and Glasses
    • INTRODUCTION
      • XPS studies of silicates
      • Technical advances
      • Focus of the review
    • FUNDAMENTAL PRINCIPLES OF XPS
      • Photoionization and analysis depths
      • Non-conductors and sample charging
      • Photopeak assignments and intensities
      • Depth of analysis
      • Linewidths
    • Si 2p AND O 1s LINEWIDTHS: EXPERIMENT AND THEORY
      • Evidence for minimum linewidths for silicates
      • Si 2p vibrational contributions
      • O 1s vibrational contributions
      • Effects of phonon broadening
      • Experimental and fitting considerations
      • Chemical shifts in silicates
      • Surface core-level shifts in silicates
    • CORE LEVEL BULK APPLICATIONS
      • Crystalline silicates
      • Silicate glasses: general aspects
      • Silicate glasses: O 1s spectra, and NBO and BO linewidths
      • Silicate glasses: uncertainties in BO% from O 1s spectra
      • Determination of free oxide O2- and its importance
    • CORE LEVEL SURFACE STUDIES OF SILICATES
      • Adsorption on silicate and oxide surfaces
      • Leaching of silicates
    • VALENCE LEVEL BULK APPLICATIONS
      • Nature of the contributions to the valence band
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • 8. Analysis of Mineral Surfaces by Atomic Force Microscopy
    • INTRODUCTION
    • EXPERIMENTAL METHODS
      • AFM set-ups
      • Experimental conditions
    • DISSOLUTION, PRECIPITATION AND GROWTH
      • Determination of reaction rates at crystal surfaces from step velocities
      • Size and shape of clay minerals
      • Limits of the AFM observation
      • AFM rates versus bulk rates
    • FORCE MEASUREMENTS
      • Hydration forces
      • Determination of the point of zero charge (PZC)
      • Kelvin Force Probe Microscopy (KPFM)
    • ATOMICALLY RESOLVED SURFACE STRUCTURES
      • Structures in contact mode
      • Surface structures analyzed by AFM in dynamic mode
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 9. Optical Spectroscopy
    • INTRODUCTION
    • GENERAL CONCEPTS
    • UNITS
      • Wavelength and energy
      • Intensities
    • THE EXPERIMENT – SAMPLE AND EQUIPMENT CONSIDERATIONS
      • Types of spectrometers
    • NOMENCLATURE OF THE DIFFERENT SPECTRA
    • INTENSITIES AND SELECTION RULES
      • The Laporte selection rule
      • Spin-forbidden transitions
    • QUANTITATIVE CONCENTRATIONS FROM OPTICAL SPECTRA
    • IDENTIFICATION OF THE OXIDATION STATES OF CATIONS
    • A GALLERY OF SPECTRA OF METAL IONS COMMONLY RESPONSIBLE FOR THE OPTICAL SPECTRA OF MINERALS
      • Titanium
      • Vanadium
      • Chromium
      • Manganese
      • Iron
      • Cobalt
      • Nickel
      • Copper
      • Rare Earth Elements and Uranium
    • INTERVALENCE CHARGE TRANSFER
      • Intervalence charge transfer in low-symmetry crystals
    • BAND GAPS
    • RADIATION-INDUCED COLOR CENTERS
    • VIBRATIONAL OVERTONES AND COMBINATIONS
    • ARTIFACTS
      • Interference fringes
      • Wood’s grating anomaly
    • TEMPERATURE AND PRESSURE DEPENDENCE
    • ABSORPTION BAND INTENSIFICATION
    • COMPILATIONS OF MINERAL OPTICAL SPECTRAL DATA
    • CONCLUDING THOUGHTS
    • REFERENCES
  • 10. Spectroscopy from Space
    • ABSTRACT
    • INTRODUCTION
    • DETECTION OF MINERALS AND THEIR SPECTRAL PROPERTIES
    • MINERAL AND FROZEN VOLATILES SPECTRAL SIGNATURES
      • H2O (ice)
      • SO2 ice
      • Nitrogen ice (N2)
      • Hydrocarbons and other ices
      • Methane ice (CH4)
    • MINERALS AND COMPOUNDS IN THE SOLAR SYSTEM DETECTED WITH SPECTROSCOPY
      • Terrestrial planets
      • Asteroids and comets
      • Jupiter system
      • Saturn system
      • Uranus system
      • The Neptune system and beyond
    • SUMMARY
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 11. SR-FTIR Microscopy and FTIR Imaging in the Earth Sciences
    • INTRODUCTION
    • FTIR MICROSCOPY AND IMAGING TECHNIQUES
    • SYNCHROTRON-RADIATION FTIR SPECTROSCOPY IN MINERAL SCIENCES
      • Introduction
      • Applications in mineral sciences
    • FTIR IMAGING
      • Introduction
      • The distribution of H and C in minerals
      • Imaging of inclusions in minerals
      • FTIR imaging of dynamic processes
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 12. Carryover of Sampling Errors and Other Problems in Far-Infrared to Far-Ultraviolet Spectra to Associated Applications
    • INTRODUCTION AND PURPOSE
    • EXPERIMENTAL METHODS
    • EXTRACTION OF SPECTRAL PROPERTIES FROM LABORATORY MEASUREMENTS
      • Ideal interactions of light with perfect, single crystals
      • Limitations of real measurements
      • Errors originating in instrumentation
      • Concerns in obtaining quantitative spectra from powders
      • Concerns regarding thin-film spectra obtained in the diamond anvil cell
      • Propagation of errors
      • Errors arising during data processing and extracting spectral parameters
      • Emission spectra
    • EXAMPLES OF SAMPLING PROBLEMS IN THE LABORATORY
      • Overly large grains in absorbing regions
      • Too small of crystals for the near-IR transparent region
      • Information on d-d transitions in the UV may pertain to band assignments
    • REMOTELY SENSED SPECTRA AND OBSERVATIONAL DATA
      • Ascertaining surface mineralogy of large bodies
      • Ascertaining the mineralogy of the 10 µm feature in observational data
    • DEDUCING DIFFUSIVE RADIATIVE TRANSFER FROM SPECTRA
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 13. Advances in Raman Spectroscopy Applied to Earth and Material Sciences
    • BRIEF HISTORICAL PERSPECTIVE AND SIMPLE THEORY
      • Quantum mechanical theory
    • INSTRUMENTATION
      • Excitation line
      • Notch filters, optical spectrometer or grating
      • Optics, monochromators, detectors
      • Different manufacturers and instrument types
      • Confocal system
      • Data acquisition and reduction
      • Baseline correction and normalization
    • OTHER TYPES OF RAMAN SPECTROSCOPY
      • Hyper-Raman scattering (HRS)
      • Surface Enhanced Raman Scattering (SERS)
    • APPLICATIONS
      • Crystalline spectra
      • Amorphous materials
      • Silicate glasses
      • Aluminosilicate glasses
      • Borosilicate glasses
      • Titanosilicate glasses
      • Iron silicate glasses
      • Volatiles in glasses
      • Fluid inclusions
      • In situ Raman spectroscopy
    • CONCLUSIONS
    • REFERENCES
  • 14. Brillouin Scattering and its Application in Geosciences
    • INTRODUCTION
    • HISTORICAL BACKGROUND
    • PHYSICAL PRINCIPLES OF THE BRILLOUIN EFFECT
      • Brillouin scattering in fluids
      • Brillouin scattering in solids
    • BRILLOUIN SPECTROSCOPY
      • Basic experimental setup
      • Light source
      • Scattering geometry
      • The spectrometer
      • Detectors
      • Measurements on transparent materials
      • Measurements of surface Brillouin scattering on opaque materials and thin films
      • Brillouin scattering at ambient or near-ambient conditions
      • Determination of Pockel’s coefficients
      • Brillouin scattering at extreme conditions
    • ANALYSIS OF THE BRILLOUIN SPECTRA AND RECOVERY OF THE ELASTIC TENSOR
      • Linear elasticity of anisotropic solids
      • Determining the elastic constants
      • What is the information from Brillouin scattering that is relevant to Earth science?
    • APPLICATIONS OF BRILLOUIN SPECTROSCOPY IN GEOSCIENCES
      • Experimental techniques to determine the anisotropic elasticity of Earth materials
      • Lithosphere and upper mantle
      • Transition zone
      • Lower mantle
    • FRONTIERS
      • Elasticity under deep mantle conditions
      • Combining Brillouin scattering with other techniques to characterize elastic anisotropy at high pressures
      • Surface Brillouin scattering at extreme conditions
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 15. NMR Spectroscopy of Inorganic Earth Materials
    • INTRODUCTION
    • THE BASICS
      • Nuclear spins, NMR frequencies and signal intensities
      • How NMR experiments are done
      • Anisotropy, motional averaging, and magic-angle spinning
    • CHEMICAL SHIFT VS. STRUCTURE
    • QUADRUPOLAR INTERACTIONS AND STRUCTURE
    • MAGNETIC DIPOLAR INTERACTIONS AND INDIRECT SPIN-SPIN COUPLINGS
    • MORE ADVANCED NMR METHODS
    • FIRST-PRINCIPLES CALCULATIONS OF NMR PARAMETERS
    • NUCLEAR SPIN RELAXATION
    • APPLICATIONS TO CRYSTALLINE SILICATES, OXIDES AND OTHER INORGANIC MATERIALS
      • Structural order/disorder in minerals
      • 1H NMR in minerals
      • NMR crystallography
    • APPLICATIONS TO GLASSES, MELTS AND OTHER AMORPHOUS MATERIALS
      • Volatile-free silicate glasses
      • Volatile-containing glasses
      • Other amorphous materials
      • Silicate and oxide melts
    • DYNAMICS, KINETICS AND TRANSITIONS
      • Phase transitions
      • Interactions of water with minerals and glasses
      • Aqueous solutions: ambient to elevated pressures
    • MINERALS CONTAINING ABUNDANT UNPAIRED ELECTRON SPINS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 16. Electron Paramagnetic Resonance Spectroscopy: Basic Principles, Experimental Techniques and Applications to Earth and Planetary Sciences
    • INTRODUCTION
    • BASIC PRINCIPLES AND SPIN HAMILTONIAN
      • Electron resonance condition and EPR spectra
      • Spin Hamiltonian
    • GUIDES TO EPR EXPERIMENTS AND SPECTRAL ANALYSES
      • Samples and techniques for generating paramagnetic species
      • Continuous-wave (CW) EPR
      • Pulse ESEEM and ENDOR
      • Ab initio calculations of EPR parameters
    • APPLICATIONS TO EARTH AND PLANETARY SCIENCES
      • EPR as a structural probe of point defects in minerals
      • In situ high-temperature and high-pressure EPR experiments
      • Optically detected magnetic resonance (ODMR) and mineral coloration
      • EPR as structural probe for other Earth and planetary materials
      • Quantitative EPR analysis
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 17. Theoretical Approaches to Structure and Spectroscopy of Earth Materials
    • INTRODUCTION
    • THEORETICAL FRAMEWORK
      • Quantum-chemical methods
      • Density Functional Theory (DFT)
      • Excitation methods
      • Classical force field methods
      • Molecular dynamics
    • STRUCTURE DETERMINATION AND OPTIMIZATION
    • VIBRATIONAL SPECTRA
      • Lattice dynamics in the harmonic approximation
      • Atomic dynamics via time correlation functions
      • Infrared absorption spectroscopy
      • Raman spectra
    • ELECTRONIC EXCITATION SPECTRA
      • UV-vis
      • XAFS and XRS
      • EELS and ELNES
      • XPS
    • SPECTROSCOPY RELATED TO NUCLEAR EXCITATIONS
      • NMR
      • Mössbauer spectroscopy
    • CONCLUDING REMARKS
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 18. High-pressure Apparatus Integrated with Synchrotron Radiation
    • INTRODUCTION
    • SYNCHROTRON TECHNIQUES APPLICABLE TO HIGH-PRESSURE RESEARCH
      • Synchrotron radiation
      • High-pressure synchrotron techniques
    • HIGH PRESSURE TECHNIQUES INTEGRATED WITH SYNCHROTRON RADIATION
      • The large volume press (LVP)
      • Diamond anvil cell techniques
      • Dynamic shockwave techniques
    • A BRIEF OUTLOOK
      • Expanding P-T range
      • New HP synchrotron techniques
    • ACKNOWLEDGMENTS
    • REFERENCES
  • 19. In situ High-Temperature Experiments
    • PREFACE
    • INTRODUCTION
    • LEVITATION TECHNIQUES
      • Introduction
      • Acoustic levitation
      • Electromagnetic levitation
      • Electrostatic levitation
      • Aerodynamics levitation
      • Experimental techniques
    • APPLICATIONS OF AERODYNAMICS LEVITATION
      • NMR experiments
      • X-ray absorption spectroscopy (XAS)
      • SAXS and SANS
      • X-ray and neutron diffraction
    • WIRE OR PLATE HEATING SYSTEM
      • Description, temperature and atmosphere control
      • Raman spectroscopy
      • X-ray diffraction
      • X-ray absorption
    • ADVANTAGES, DIFFERENCES AND CONCLUSIONS
    • ACKNOWLEDGMENTS
    • REFERENCES

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика