Электронная библиотека Финансового университета

     

Детальная информация

De Gruyter studies in mathematics ;.
Stochastic calculus of variations for jump processes. — 54. / Yasushi Ishikawa. — 2nd edition. — 1 online resource (x, 278 pages). — (De Gruyter studies in mathematics). — <URL:http://elib.fa.ru/ebsco/1204362.pdf>.

Дата создания записи: 03.06.2016

Тематика: Malliavin calculus.; Calculus of variations.; Jump processes.; Stochastic processes.; Stochastic Processes; Jump process.; Lévy process.; S.D.E.; Stochastic calculus.; Calcul de Malliavin.; Calcul des variations.; Processus de sauts.; Processus stochastiques.; MATHEMATICS — Applied.; MATHEMATICS — Probability & Statistics — General.; Calculus of variations.; Jump processes.; Malliavin calculus.; Stochastic processes.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

This monograph is a concise introduction to the stochastic calculus of variations for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. The author provides many results on this topic in a self-contained way. The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Preface
  • Preface to the second edition
  • Contents
  • Introduction
  • 1. Lévy processes and Itô calculus
    • 1.1 Poisson random measure and Lévy processes
      • 1.1.1 Lévy processes
      • 1.1.2 Examples of Lévy processes
      • 1.1.3 Stochastic integral for a finite variation process
    • 1.2 Basic materials for SDEs with jumps
      • 1.2.1 Martingales and semimartingales
      • 1.2.2 Stochastic integral with respect to semimartingales
      • 1.2.3 Doléans’ exponential and Girsanov transformation
    • 1.3 Itô processes with jumps
  • 2. Perturbations and properties of the probability law
    • 2.1 Integration-by-parts on Poisson space
      • 2.1.1 Bismut’s method
      • 2.1.2 Picard’s method
      • 2.1.3 Some previousmethods
    • 2.2 Methods of finding the asymptotic bounds (I)
      • 2.2.1 Markov chain approximation
      • 2.2.2 Proof of Theorem 2.3
      • 2.2.3 Proof of lemmas
    • 2.3 Methods of finding the asymptotic bounds (II)
      • 2.3.1 Polygonal geometry
      • 2.3.2 Proof of Theorem 2.4
      • 2.3.3 Example of Theorem 2.4 – easy cases
    • 2.4 Summary of short time asymptotic bounds
      • 2.4.1 Case that µ(dz) is absolutely continuous with respect to the m-dimensional Lebesgue measure dz
      • 2.4.2 Case that µ(dz) is singular with respect to dz
    • 2.5 Auxiliary topics
      • 2.5.1 Marcus’ canonical processes
      • 2.5.2 Absolute continuity of the infinitely divisible laws
      • 2.5.3 Chain movement approximation
      • 2.5.4 Support theorem for canonical processes
  • 3. Analysis of Wiener–Poisson functionals
    • 3.1 Calculus of functionals on the Wiener space
      • 3.1.1 Definition of the Malliavin–Shigekawa derivative Dt
      • 3.1.2 Adjoint operator d = D*
    • 3.2 Calculus of functionals on the Poisson space
      • 3.2.1 One-dimensional case
      • 3.2.2 Multidimensional case
      • 3.2.3 Characterisation of the Poisson space
    • 3.3 Sobolev space for functionals over the Wiener–Poisson space
      • 3.3.1 The Wiener space
      • 3.3.2 The Poisson Space
      • 3.3.3 The Wiener–Poisson space
    • 3.4 Relation with the Malliavin operator
    • 3.5 Composition on the Wiener–Poisson space (I) – general theory
      • 3.5.1 Composition with an element in S'
      • 3.5.2 Sufficient condition for the composition
    • 3.6 Smoothness of the density for Itô processes
      • 3.6.1 Preliminaries
      • 3.6.2 Big perturbations
      • 3.6.3 Concatenation (I)
      • 3.6.4 Concatenation (II) – the case that (D) may fail
      • 3.6.5 More on the density
    • 3.7 Composition on the Wiener–Poisson space (II) – Itô processes
  • 4. Applications
    • 4.1 Asymptotic expansion of the SDE
      • 4.1.1 Analysis on the stochastic model
      • 4.1.2 Asymptotic expansion of the density
      • 4.1.3 Examples of asymptotic expansions
    • 4.2 Optimal consumption problem
      • 4.2.1 Setting of the optimal consumption
      • 4.2.2 Viscosity solutions
      • 4.2.3 Regularity of solutions
      • 4.2.4 Optimal consumption
      • 4.2.5 Historical sketch
  • Appendix
  • Bibliography
  • List of symbols
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика