Электронная библиотека Финансового университета

     

Детальная информация

De Gruyter reference.
Rare earth elements: analytics / edited by Alfred Golloch. — 1 online resource. — (De Gruyter reference). — <URL:http://elib.fa.ru/ebsco/1513082.pdf>.

Дата создания записи: 27.03.2017

Тематика: Rare earths.; SCIENCE — Chemistry — Inorganic.; Rare earths.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • Preface
  • Contents
  • List of Contributing Authors
  • 1. Introduction
    • References
  • 2. Analytics of Rare Earth Elements – Basics and Methods
    • 2.1 Electronic configurations of RE elements and analytical properties
      • 2.1.1 Chemistry of Ln3+ ions
      • 2.1.2 Chemistry of Ln2+ and Ln4+ ions
    • 2.2 The development of rare earth analytics from 1940 to present
      • 2.2.1 Determination methods applied during the period from 1940 to 1960
      • 2.2.2 Separation methods applied during the period 1940–1960
      • 2.2.3 RE analysis during the period 1960–1980
      • 2.2.4 Literature review 1978
      • 2.2.5 Situation of RE analytics from 1980 to present
    • References
  • 3. Separation/Preconcentration Techniques for Rare Earth Elements Analysis
    • 3.1 Introduction
    • 3.2 Chemical separation techniques for REEs
      • 3.2.1 Precipitation/coprecipitation
    • 3.3 Liquid–liquid extraction
      • 3.3.1 Affecting factors for LLE of REEs
      • 3.3.2 Extractants for REEs
      • 3.3.3 Extractant concentration and extraction equilibrium constant
      • 3.3.4 Medium pH
      • 3.3.5 Salting-out agent
      • 3.3.6 Extraction systems for REEs and their application
    • 3.4 Liquid phase microextraction
      • 3.4.1 Operation modes and mechanism
      • 3.4.2 Single-drop microextraction
      • 3.4.3 Hollow fiber liquid phase microextraction
      • 3.4.4 Two-phase HF-LPME
      • 3.4.5 Three-phase HF-LPME
      • 3.4.6 Dispersive liquid–liquid microextraction
      • 3.4.7 Solidified floating organic drop microextraction
      • 3.4.8 Affecting factors in LPME
      • 3.4.9 Cloud point extraction
    • 3.5 Solid phase extraction
      • 3.5.1 Carbon nanotubes and graphene oxide
      • 3.5.2 Silica-based materials
      • 3.5.3 Chelating resin and ionic-exchange resin
      • 3.5.4 Metal oxide nanostructured materials
      • 3.5.5 Ion-imprinted materials
      • 3.5.6 Metal-organic frameworks (MOFs)
      • 3.5.7 Restricted access materials
      • 3.5.8 Capillary microextraction
    • References
  • 4. Chromatographic Techniques for Rare Earth Elements Analysis
    • 4.1 Introduction
    • 4.2 Liquid chromatography
      • 4.2.1 Ion-exchange chromatography
      • 4.2.2 Ion chromatography
      • 4.2.3 Reverse-phase ion pair chromatography (RPIPC)
      • 4.2.4 Extraction chromatography
      • 4.2.5 Thin layer chromatography (TLC) and Paper chromatography (PC)
    • 4.3 Gas chromatography
    • 4.4 Capillary Electrophoresis (CE)
      • 4.4.1 Basic knowledge and principle
      • 4.4.2 Influencing factors on CE separation
      • 4.4.3 Applications in REEs analysis
    • 4.5 Supercritical fluid chromatography
    • References
  • 5. Analysis and Speciation of Lanthanoides by ICP-MS
    • 5.1 Introduction
    • 5.2 Fundamentals of ICP-MS
      • 5.2.1 Sample preparation
      • 5.2.2 Sample introduction
      • 5.2.3 The ion source
      • 5.2.4 Interface
      • 5.2.5 Lens system
      • 5.2.6 Mass analyzers
      • 5.2.7 Detector and computer
    • 5.3 Analytical figures of merit
    • 5.4 Speciation of Gd-based contrast agents
    • 5.5 Analysis of Gd-based contrast agents in medical samples
    • 5.6 Analysis of Gd-based contrast agents in environmental samples
    • 5.7 Summary and outlook
    • References
  • 6. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
    • 6.1 Introduction
      • 6.1.1 Spectral interference
      • 6.1.2 Matrix effect
      • 6.1.3 Acid effect
      • 6.1.4 Sensitivity-enhancing effect of organic solvent
    • 6.2 Sample introduction for ICP
      • 6.2.1 Pneumatic nebulization and ultrasonic nebulization
      • 6.2.2 Flow injection
      • 6.2.3 Laser ablation
      • 6.2.4 Electrothermal vaporization
    • 6.3 ETV-ICP-OES for REE analysis
      • 6.3.1 Fluorination-assisted (F)ETV-ICP-OES for REEs analysis
      • 6.3.2 Low-temperature ETV-ICP-OES for REEs analysis
    • 6.4 Application of ICP-OES in the analysis of high-purity REE, alloys and ores
      • 6.4.1 High-purity REE analysis by ICP-OES
      • 6.4.2 REE ores analysis by ICP-OES
      • 6.4.3 Trace REE analysis by ICP-OES in alloys
    • References
  • 7. Application of Spark Atomic Emission Spectrometry for the Determination of Rare Earth Elements inMetals and Alloys
    • 7.1 Introduction
    • 7.2 Spark emission spectrometry basics
    • 7.3 Setup of a spark emission spectrometer
      • 7.3.1 Argon supply
      • 7.3.2 Spark stand
      • 7.3.3 Spectrometer optical system
      • 7.3.4 Spark generator
      • 7.3.5 Power supply
      • 7.3.6 Operation and evaluation PC
    • 7.4 The analysis process
    • 7.5 Quantitative analysis
      • 7.5.1 Calibration and recalibration
      • 7.5.2 Evaluation of calibration and analysis results
    • 7.6 Using spark emission spectrometry
    • 7.7 Analysing rare earths using spark emission spectrometry
      • 7.7.1 Industrial use of rare earths
      • 7.7.2 Spectrometric prerequisites
      • 7.7.3 Calibration samples
    • 7.8 Analysis of aluminium alloys
      • 7.8.1 Calibration (analysis function) and accuracy
      • 7.8.2 Detection limits
      • 7.8.3 Repeatability
    • 7.9 Analysis of magnesium alloys
      • 7.9.1 Calibration (analysis function) and accuracy
      • 7.9.2 Detection limits
      • 7.9.3 Repeatability
    • 7.10 Analysis of iron alloys
      • 7.10.1 Calibration (analysis function) and accuracy
      • 7.10.2 Detection limits
      • 7.10.3 Repeatability
      • 7.10.4 Long-term stability
    • 7.11 Analysis of zinc alloys
      • 7.11.1 Calibration (analysis function) and accuracy
      • 7.11.2 Detection limits
      • 7.11.3 Repeatability
    • 7.12 Conclusion
    • References
  • 8. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements
    • 8.1 Introduction
    • 8.2 Principle of X-ray fluorescence analysis
    • 8.3 XRF methods
      • 8.3.1 Energy-dispersive X-ray fluorescence analysis
      • 8.3.2 Wavelength-dispersive X-ray analysis
      • 8.3.3 Comparison of EDXRF–WDXRF
      • 8.3.4 Other XRF techniques
    • 8.4 Sample preparation
      • 8.4.1 Pressed pellets techniques
      • 8.4.2 Fusion technology
      • 8.4.3 Additional sample preparation techniques
    • 8.5 Practical application of REEs determination
      • 8.5.1 Reference materials
      • 8.5.2 Measuring parameters
      • 8.5.3 Analyte lines
      • 8.5.4 Lower limit of detection (LLD)
    • 8.6 Calibration
      • 8.6.1 Other calibration strategies mentioned in literature
    • 8.7 Summary
    • References
  • 9. Neutron Activation Analysis of the Rare Earth Elements (REE) – With Emphasis on Geological Materials
    • 9.1 Introduction
    • 9.2 Principles of neutron activation: activation equation, cross sections
    • 9.3 Equipment
      • 9.3.1 Neutron sources
      • 9.3.2 The counting system
    • 9.4 Practical considerations
      • 9.4.1 Instrumental versus radiochemical NAA
      • 9.4.2 Samples and standards
      • 9.4.3 Counting strategies
      • 9.4.4 Radiochemical neutron activation analysis (RNAA) – a fast separation scheme
      • 9.4.5 Data reduction and sources of error
    • 9.5 Conclusion
    • Acknowledgements
    • References
  • 10. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy
    • 10.1 Introduction
    • 10.2 Quantitative mineralogy
    • 10.3 Scanning electron microscopy
    • 10.4 SEM-based automated quantitative mineralogy
      • 10.4.1 Quantitative Evaluation of Minerals by Scanning Electron Microscopy
      • 10.4.2 Mineral Liberation Analyser
      • 10.4.3 Tescan-Integrated Mineral Analyser
      • 10.4.4 ZEISS Mineralogic Mining
    • 10.5 Quantitative REE mineralogy
    • 10.6 Concluding remarks
    • Acknowledgements
    • References
  • 11. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques
    • 11.1 Introduction
    • 11.2 Bio-conjugation of biomolecules
      • 11.2.1 Fundamentals
      • 11.2.2 Bio-conjugation of antibodies
    • 11.3 Applications
      • 11.3.1 Development of identification and quantification strategies for DNA, peptides and proteins in mass spectrometry
      • 11.3.2 Analytical and diagnostic applications of lanthanoides
    • 11.4 Outlook
    • References
  • 12. Lanthanoides in Glass and Glass Ceramics
    • 12.1 Introduction
    • 12.2 Literature survey of rare earth chemical analysis in glass
      • 12.2.1 Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
      • 12.2.2 Laser-ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES)
      • 12.2.3 ICP-MS analysis of solutions
      • 12.2.4 X-ray fluorescence analysis (XRF)
    • 12.3 Analytical methods for the determination of main components of glass (except lanthanoides)
    • 12.4 Preparation of sample solutions for glass analysis by ICP-OES
      • 12.4.1 Hydrofluoric acid digestion
      • 12.4.2 Melt digestion
    • 12.5 ICP-OES analysis of rare earth elements
    • 12.6 Analysis of special optical glass
    • 12.7 Analysis of glass by topochemical analysis
    • References
  • 13. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS
    • 13.1 Introduction
    • 13.2 Technical development
    • 13.3 Physical and chemical effects on concentration and isotope ratio determination
    • 13.4 Determination of REE concentrations
      • 13.4.1 Sample preparation
      • 13.4.2 Quantification
    • 13.5 Determination of isotope ratios by multi-collector (MC)-ICP-MS
      • 13.5.1 Solution-MC-ICP-MS
      • 13.5.2 LA-MC-ICP-MS
    • 13.6 Concluding remarks
    • Acknowledgements
    • References
  • 14. Recycling of Rare Earth Elements
    • 14.1 Recycling of rare earth elements
    • 14.2 Recycling from fluorescent lamp scraps
      • 14.2.1 Starting material
      • 14.2.2 Solid-state chlorination
      • 14.2.3 Optimization of the solid-state chlorination
      • 14.2.4 Recycling process
      • 14.2.5 Summary
    • 14.3 RE metal recycling from Fe14Nd2Bmagnets
      • 14.3.1 Starting material
      • 14.3.2 Preliminary tests
      • 14.3.3 Optimization of the solid-state chlorination
      • 14.3.4 Recycling process
      • 14.3.5 Summary
    • References
  • Index

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика