Карточка | Таблица | RUSMARC | |
Bauer, Dieter. Computational Strong-Field Quantum Dynamics [[electronic resource].]. — Berlin/Boston, UNITED STATES: De Gruyter, 2017. — 1 online resource (290) : ill. — (De Gruyter Textbook). — <URL:http://elib.fa.ru/ebsco/1513087.pdf>.Дата создания записи: 12.05.2017 Тематика: Quantum optics.; Quantum theory.; Laser manipulation (Nuclear physics); High power lasers.; SCIENCE / Physics / Optics & Light Коллекции: EBSCO Разрешенные действия: –
Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети
Группа: Анонимные пользователи Сеть: Интернет |
Права на использование объекта хранения
Место доступа | Группа пользователей | Действие | ||||
---|---|---|---|---|---|---|
Локальная сеть Финуниверситета | Все | |||||
Интернет | Читатели | |||||
Интернет | Анонимные пользователи |
Оглавление
- Contents
- Preface
- List of abbreviations
- I How to propagate a wavefunction?
- 1 Time-dependent Schrödinger equation
- 1.1 Time propagation and stability
- 1.2 Spatial discretization
- 1.3 Imaginary-time propagation
- 1.4 More dimensions: Operator splitting
- 1.5 Expansion in spherical harmonics
- 2 Scaled cylindrical coordinates
- 3 Employing second-quantization notion
- 3.1 Grid hopping
- 4 Summary
- 1 Time-dependent Schrödinger equation
- II Calculation of typical strong-field observables
- 1 Ionization rates
- 2 Photoelectron spectra
- 2.1 Energy window operator method
- 2.2 Spectral method
- 2.3 Time-dependent surface flux method
- 2.4 Pros and cons of the various methods for photoelectron spectra
- 3 Emitted radiation and high-harmonics spectra
- III Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein–Gordon equation
- 1 From nonrelativistic to relativistic quantum mechanics
- 1.1 Relativistic quantum mechanical equations of motion—a naive attempt
- 1.2 The Klein–Gordon equation
- 1.3 The Dirac equation
- 2 Free particles and wave packets
- 2.1 Free-particle solution of the Klein–Gordon equation
- 2.2 Free-particle solution of the Dirac equation
- 3 Numerical solution of the Dirac equation
- 3.1 General methods for time-dependent quantum mechanics
- 3.2 The split operator method
- 3.3 The Fourier split operator method for the Schrödinger equation
- 3.4 The Fourier split operator method for the Dirac equation
- 4 Numerical examples
- 1 From nonrelativistic to relativistic quantum mechanics
- IV Time-dependent density functional theory
- 1 A few general remarks on time-dependent many-particle methods
- 2 DFT for effective single-electron potentials
- 2.1 KS spin-DFT
- 2.2 Actual implementation
- 3 Time-dependent calculations
- 3.1 Time-dependent KS solver with spherical harmonics and multipole expansion
- 3.2 Low-dimensional benchmark studies
- 3.3 Where TDDFT fails in practice
- V The multiconfiguration time-dependent Hartree–Fock method
- 1 Multiconfiguration time-dependent Hartree–Fock
- 2 Implementing the MCTDHF method
- 2.1 Uniform grids
- 2.2 Computation of the mean-field operator
- 2.3 Restricted vs unrestricted
- 2.4 Time integration
- 2.5 Computing the ground state
- 3 Applications of MCTDHF
- 3.1 Calculation of highly correlated ground states
- 3.2 Nonsequential double ionization
- 3.3 High-harmonic generation
- 4 Extending MCTDHF to nonuniform grids
- 4.1 Differentiation on a nonuniform grid
- 4.2 Integration on nonuniform grids
- 4.3 Treatment of the two-body terms
- 4.4 Ground state of small sodium clusters
- 5 Conclusion
- VI Time–dependent configuration interaction singles
- 1 Introduction
- 2 Basics of TDCIS
- 2.1 TDCIS wavefunction
- 2.2 The N-body Hamiltonian
- 2.3 Equations of motion
- 2.4 Limitations
- 3 Implementation of TDCIS
- 3.1 Symmetries and orbital representations
- 3.2 Evaluating matrix elements
- 3.3 Spin-orbit interaction
- 3.4 Grid representation
- 3.5 Hartree–Fock
- 3.6 Complex absorbing potential
- 3.7 Expectation values
- 3.8 Ion density matrix
- 4 Strong-field applications of TDCIS
- 4.1 Subcycle ionization dynamics and coherent hole motion
- 4.2 Multiorbital and collective excitations in HHG
- VII Strong-field approximation and quantum orbits
- 1 S-matrix elements
- 2 Strong-field approximation
- 3 Harmonic generation rate and ionization rate
- 4 Ground-state wavefunctions, rescattering potential, and multielectron effects
- 5 Numerical examples for harmonic and electron spectra
- 6 Saddle-point method
- 7 Classification of the saddle-point solutions
- 8 Numerical results for HATI spectra obtained using the SPM and uniform approximation
- 9 Quantum orbits
- 10 Summary
- VIII Microscopic particle-in-cell approach
- 1 Basic concept
- 1.1 Physical problem
- 1.2 Particle representation
- 1.3 PIC approximation
- 1.4 MicPIC force decomposition
- 1.5 The MicPIC approximation
- 2 Numerical aspects of MicPIC
- 2.1 Electromagnetic field propagation with the FDTD method
- 2.2 Particle representation on the PIC level
- 2.3 Local correction
- 2.4 Particle propagation
- 2.5 Implementation of ionization
- 2.6 MicPIC parameters and scaling
- 2.7 MicPIC system energy calculation
- 3 Applications
- 3.1 Laser excitation of a solid-density foil: A simple MicPIC example
- 3.2 Time-resolved x-ray imaging
- 4 Summary
- 1 Basic concept
- Index
Статистика использования
Количество обращений: 0
За последние 30 дней: 0 Подробная статистика |