FinUniversity Electronic Library

     

Details

Bauer, Dieter. Computational Strong-Field Quantum Dynamics [[electronic resource].]. — Berlin/Boston, UNITED STATES: De Gruyter, 2017. — 1 online resource (290) : ill. — (De Gruyter Textbook). — <URL:http://elib.fa.ru/ebsco/1513087.pdf>.

Record create date: 5/12/2017

Subject: Quantum optics.; Quantum theory.; Laser manipulation (Nuclear physics); High power lasers.; SCIENCE / Physics / Optics & Light

Collections: EBSCO

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Document access rights

Network User group Action
Finuniversity Local Network All Read Print Download
Internet Readers Read Print
-> Internet Anonymous

Table of Contents

  • Contents
  • Preface
  • List of abbreviations
  • I How to propagate a wavefunction?
    • 1 Time-dependent Schrödinger equation
      • 1.1 Time propagation and stability
      • 1.2 Spatial discretization
      • 1.3 Imaginary-time propagation
      • 1.4 More dimensions: Operator splitting
      • 1.5 Expansion in spherical harmonics
    • 2 Scaled cylindrical coordinates
    • 3 Employing second-quantization notion
      • 3.1 Grid hopping
    • 4 Summary
  • II Calculation of typical strong-field observables
    • 1 Ionization rates
    • 2 Photoelectron spectra
      • 2.1 Energy window operator method
      • 2.2 Spectral method
      • 2.3 Time-dependent surface flux method
      • 2.4 Pros and cons of the various methods for photoelectron spectra
    • 3 Emitted radiation and high-harmonics spectra
  • III Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein–Gordon equation
    • 1 From nonrelativistic to relativistic quantum mechanics
      • 1.1 Relativistic quantum mechanical equations of motion—a naive attempt
      • 1.2 The Klein–Gordon equation
      • 1.3 The Dirac equation
    • 2 Free particles and wave packets
      • 2.1 Free-particle solution of the Klein–Gordon equation
      • 2.2 Free-particle solution of the Dirac equation
    • 3 Numerical solution of the Dirac equation
      • 3.1 General methods for time-dependent quantum mechanics
      • 3.2 The split operator method
      • 3.3 The Fourier split operator method for the Schrödinger equation
      • 3.4 The Fourier split operator method for the Dirac equation
    • 4 Numerical examples
  • IV Time-dependent density functional theory
    • 1 A few general remarks on time-dependent many-particle methods
    • 2 DFT for effective single-electron potentials
      • 2.1 KS spin-DFT
      • 2.2 Actual implementation
    • 3 Time-dependent calculations
      • 3.1 Time-dependent KS solver with spherical harmonics and multipole expansion
      • 3.2 Low-dimensional benchmark studies
      • 3.3 Where TDDFT fails in practice
  • V The multiconfiguration time-dependent Hartree–Fock method
    • 1 Multiconfiguration time-dependent Hartree–Fock
    • 2 Implementing the MCTDHF method
      • 2.1 Uniform grids
      • 2.2 Computation of the mean-field operator
      • 2.3 Restricted vs unrestricted
      • 2.4 Time integration
      • 2.5 Computing the ground state
    • 3 Applications of MCTDHF
      • 3.1 Calculation of highly correlated ground states
      • 3.2 Nonsequential double ionization
      • 3.3 High-harmonic generation
    • 4 Extending MCTDHF to nonuniform grids
      • 4.1 Differentiation on a nonuniform grid
      • 4.2 Integration on nonuniform grids
      • 4.3 Treatment of the two-body terms
      • 4.4 Ground state of small sodium clusters
    • 5 Conclusion
  • VI Time–dependent configuration interaction singles
    • 1 Introduction
    • 2 Basics of TDCIS
      • 2.1 TDCIS wavefunction
      • 2.2 The N-body Hamiltonian
      • 2.3 Equations of motion
      • 2.4 Limitations
    • 3 Implementation of TDCIS
      • 3.1 Symmetries and orbital representations
      • 3.2 Evaluating matrix elements
      • 3.3 Spin-orbit interaction
      • 3.4 Grid representation
      • 3.5 Hartree–Fock
      • 3.6 Complex absorbing potential
      • 3.7 Expectation values
      • 3.8 Ion density matrix
    • 4 Strong-field applications of TDCIS
      • 4.1 Subcycle ionization dynamics and coherent hole motion
      • 4.2 Multiorbital and collective excitations in HHG
  • VII Strong-field approximation and quantum orbits
    • 1 S-matrix elements
    • 2 Strong-field approximation
    • 3 Harmonic generation rate and ionization rate
    • 4 Ground-state wavefunctions, rescattering potential, and multielectron effects
    • 5 Numerical examples for harmonic and electron spectra
    • 6 Saddle-point method
    • 7 Classification of the saddle-point solutions
    • 8 Numerical results for HATI spectra obtained using the SPM and uniform approximation
    • 9 Quantum orbits
    • 10 Summary
  • VIII Microscopic particle-in-cell approach
    • 1 Basic concept
      • 1.1 Physical problem
      • 1.2 Particle representation
      • 1.3 PIC approximation
      • 1.4 MicPIC force decomposition
      • 1.5 The MicPIC approximation
    • 2 Numerical aspects of MicPIC
      • 2.1 Electromagnetic field propagation with the FDTD method
      • 2.2 Particle representation on the PIC level
      • 2.3 Local correction
      • 2.4 Particle propagation
      • 2.5 Implementation of ionization
      • 2.6 MicPIC parameters and scaling
      • 2.7 MicPIC system energy calculation
    • 3 Applications
      • 3.1 Laser excitation of a solid-density foil: A simple MicPIC example
      • 3.2 Time-resolved x-ray imaging
    • 4 Summary
  • Index

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics