FinUniversity Electronic Library

     

Details

Materials research foundations ;.
Titanate based ceramic dielectric materials [[electronic resource]]. — v. 25. / by Dr. R. Saravanan, M.Sc., M.Phil., Ph.D. — Millersville, PA: Materials Research Forum LLC, [2018]. — 1 online resource. — (Materials research foundations). — <URL:http://elib.fa.ru/ebsco/1696646.pdf>.

Record create date: 2/3/2018

Subject: Dielectrics.; Electronic ceramics.; Titanates.; TECHNOLOGY & ENGINEERING / Mechanical.; TECHNOLOGY & ENGINEERING / Materials Science / Ceramics.; Ceramic materials.; Dielectrics.; Electronic ceramics.; Materials science.; Titanates.

Collections: EBSCO

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

The book presents research results concerning the electron density distribution in a number of doped barium titanate ceramic materials using experimental X-ray diffraction data, UV-visible spectrophotometry (UV-vis), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The analysis of interatomic bonding and electron density distribution is important for predicting the properties of potentially important materials and has previously been lacking for the materials studied.

Document access rights

Network User group Action
Finuniversity Local Network All Read Print Download
Internet Readers Read Print
-> Internet Anonymous

Table of Contents

  • front-matter
  • Table of Contents
  • Preface
  • 1
    • 1.1 Objectives
    • 1.2 Importance of barium titanate (BaTiO3)
    • 1.3 Crystal structure of barium titanate (BaTiO3)
      • 1.3.1 Properties
      • 1.3.2 Uses and applications
    • 1.4 Doped barium titanate
    • 1.5 Applications of doped BaTiO3
      • 1.5.1 Barium strontium titanate (BST)
      • 1.5.2 Barium zirconium titanate (BZT)
      • 1.5.3 Barium lanthanum titanate (BLT)
      • 1.5.4 Barium cerium titanate (BCT)
      • 1.5.5 Barium strontium zirconium titanate (BSZT)
    • 1.6 Preparation of titanates
    • 1.7 Solid state reaction technique
      • 1.7.1 Mixing
      • 1.7.2 Calcination
      • 1.7.3 Grinding
      • 1.7.4 Pressing / pelletizing
      • 1.7.5 Final sintering
    • 1.8 Preparation of doped titanates
      • 1.8.1 Preparation of Ba1-xSrxTiO3
      • 1.8.2 Preparation of BaTi1-xZrxO3
      • 1.8.3 Preparation of Ba1-x La2x/3TiO3
      • 1.8.4 Preparation of BaTi1-xCexO3
      • 1.8.5 Preparation of Ba1-xSrxTi0.9Zr0.1O3
    • 1.9 Characterization methods
      • 1.9.1 Powder X-ray diffraction method (PXRD)
      • 1.9.3 Scanning electron microscopy (SEM)
      • 1.9.4 Energy dispersive X-ray spectroscopy (EDS)
    • 1.10 Instruments used for characterization studies
    • 1.11 Methodologies used
      • 1.11.1 XRD powder profile refinement through Rietveld technique
      • 1.11.1.1 Refinement procedure
      • 1.11.1.2 Peak shape
      • 1.11.1.3 Peak width
      • 1.11.1.4 Preferred orientation
      • 1.11.1.5 Background function
      • 1.11.1.6 XRD powder profile refinement using JANA 2006
      • 1.11.2 Charge density analysis through maximum entropy method (MEM)
      • 1.11.2.1 Electron density
      • 1.11.2.2 Structure factor
      • 1.11.2.3 Fourier method
      • 1.11.2.4 Formalism of maximum entropy method (MEM)
      • 1.11.2.5 Principle of MEM
      • 1.11.2.6 MEM methodology
      • 1.11.3 Optical hand gap evaluation using UV-vis spectra
      • 1.11.4 Grain size evaluation
    • References
  • 2
    • 2.1 Introduction
    • 2.2 Structural characterization – Powder X-ray diffraction
      • 2.2.1 Ba1-xSrxTiO3
      • 2.2.2 BaTi1-xZrxO3
      • 2.2.3 Ba1-xLa2x/3TiO3
      • 2.2.4 BaTi1-xCexO3
      • 2.2.5 Ba1-xSrxTi0.9Zr0.1O3
    • 2.3 Optical characterization – UV -visible absorption spectra
      • 2.3.1 Ba1-x SrxTiO3
      • 2.3.2 BaTi1-xZrxO3
      • 2.3.3 Ba1-xLa2x/3TiO3
      • 2.3.4 BaTi1-xCexO3
      • 2.3.5 Ba1-xSrxTi0.9Zr0.1O3
    • 2.4 Morphological characterization - SEM
      • 2.4.1 Ba1-xSrxTiO3
      • 2.4.2 BaTi1-xZrxO3
      • 2.4.3 Ba1-xLa2x/3TiO3
      • 2.4.4 BaTi1-xCexO3
      • 2.4.5 Ba1-xSrxTi0.9Zr0.1O3
    • 2.5 Elemental confirmation - EDS
      • 2.5.1 Ba1-xSrxTiO3
      • 2.5.2 BaTi1-xZrxO3
      • 2.5.3 Ba1-xLa2x/3TiO3
      • 2.5.4 BaTi1-xCexO3
      • 2.5.5 Ba1-xSrxTi0.9Zr0.1O3
    • 2.6 Charge density distribution – maximum entropy method
      • 2.6.1 Ba1-xSrxTiO3
      • 2.6.2 BaTi1-xZrxO3
      • 2.6.3 Ba1-xLa2x/3TiO3
      • 2.6.4 BaTi1-xCexO3
      • 2.6.5 Ba1-xSrxTi0.9Zr0.1O3
    • References
  • 3. Analysis of Results
    • 3.1 Introduction
    • 3.2 Sample preparation
    • 3.3 Structutal analysis of doped titanates
      • 3.3.1 Ba1-x SrxTiO3
      • 3.3.2 BaTi1-xZrxO3
      • 3.3.3 Ba1-xLa2x/3TiO3
      • 3.3.4 BaTi1-xCexO3
      • 3.3.5 Ba1-xSrxTi0.9Zr0.1O3
    • 3.4 Grain size analysis of doped titanates
    • 3.5 Optical analysis of doped titanates
      • 3.5.1 Ba1-xSrxTiO3
      • 3.5.2 BaTi1-xZrxO3
      • 3.5.3 Ba1-xLa2x/3TiO3
      • 3.5.4 BaTi1-xCexO3
      • 3.5.5 Ba1-xSrxTi0.9Zr0.1O3
    • 3.6 Morphological analysis of doped titanates
      • 3.6.1 Ba1-xSrxTiO3
      • 3.6.2 BaTi1-xZrxO3
      • 3.6.3 Ba1-xLa2x/3TiO3
      • 3.6.4 BaTi1-xCexO3
      • 3.6.5 Ba1-xSrxTi0.9Zr0.1O3
    • 3.7 Elemental analysis of doped titanates
      • 3.7.1 Ba1-xSrxTiO3
      • 3.7.2 BaTi1-xZrxO3
      • 3.7.3 Ba1-xLa2x/3TiO3
      • 3.7.4 BaTi1-xCexO3
      • 3.7.5 Ba1-xSrxTi0.9Zr0.1O3
    • 3.8 Charge density analysis of doped titanates
      • 3.8.1 Ba1-x SrxTiO3
      • 3.8.2 BaTi1-xZrxO3
      • 3.8.3 Ba1-xLa2x/3TiO3
      • 3.8.4 BaTi1-xCexO3
      • 3.8.5 Ba1-xSrxTi0.9Zr0.1O3
    • References
  • 4
    • Conclusion
      • (i) Structural
      • (ii) Grain size
      • (iii) Optical
      • (iv) Morphological
      • (v) Elemental
      • (vi) Charge density
  • Keyword Index
  • About the Author

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics