Электронная библиотека Финансового университета

     

Детальная информация

Materials research foundations ;.
Magnetochemistry: materials and applications. — v. 66. / Edited by Inamuddin, Rajender Boddula and Abdullah M. Asiri. — 1 online resource (345 pages ): illustrations (some color. — (Materials Research Foundations). — <URL:http://elib.fa.ru/ebsco/2362026.pdf>.

Дата создания записи: 19.05.2020

Тематика: Magnetochemistry.; Magnetic materials.; Magnetic materials.; Magnetochemistry.

Коллекции: EBSCO

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети Действие 'Загрузить' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет

Аннотация

The book covers the entire spectrum of magnetic nanomaterials and their highly interesting properties. Keywords: Magnetic Nanomaterials, Analytical Chemistry, Biomedical Science, Spintronics, Electrochemistry, Energy Storage, Energy Conversion, Membranes, Fuel Cells, Bio-Sensors, Electrocatalysis, Separation Processes, Hydrogen Storage, Supercapacitors, SERS Effect.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть Финуниверситета Все Прочитать Печать Загрузить
Интернет Читатели Прочитать Печать
-> Интернет Анонимные пользователи

Оглавление

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Magnetic Nanomaterials for Bio-Sensors based on SERS Effect
    • 1. Introduction
    • 2. Surface enhanced Raman spectroscopy
      • 2.1 Mechanism of surface enhanced Raman scattering
      • 2.2 Development of SERS active substrates
    • 3. Progress of magnetic SERS substrate research
      • 3.1 Iron oxide based SERS substrate
      • 3.2 Nickel-based SERS substrate
      • 3.3 Cobalt- ferrite based SERS substrate
    • 4. Application of SERS in biosensors
      • 4.1 Immunosensors
      • 4.2 Microbial sensors
      • 4.3 Nucleic acid sensors
      • 4.4 Cell sensor
      • 4.5 Other biomolecular sensors
    • Conclusions and Outlook
    • References
  • 2
    • Magnetic Nanomaterials for Electrocatalysis
    • 1. Introduction
      • 1.1 Industrial needs for energy and electrocatalysis
    • 2. Fe-, Co-, Ni-based nanocomposite materials as electrocatalysts
      • 2.1 Iron-based nanocomposite materials as electrocatalyst
      • 2.1.1 Iron-based nanocomposite materials as electrocatalysts in water splitting
      • 2.1.2 Iron-based nanocomposite materials as electrocatalyst in biomedicine
      • 2.2 Cobalt-based nanocomposite materials as electrocatalyst
      • 2.3 Nickel-based nanocomposite materials as electrocatalyst
    • 3. Structure and morphology of magnetic nanoparticles used in electrocatalysis
      • 3.1 Spinel ferrites in nanoelectrocatalysis
      • 3.1.1 Nanoelectrocatalytic applications of CuFe2O4-based nanocomposites
      • 3.1.2 Nanoelectrocatalytic applications of CoFe2O4-based nanocomposites
      • 3.1.3 Nanoelectrocatalytic applications of NiFe2O4-based nanocomposites
      • 3.2 Size and morphology of magnetic nanoparticles used in electrocatalysis
    • 4. Influence of the synthesis parameters on the properties of nanocomposite materials of importance for catalysis
      • 4.1 Main structural properties of the phases within investigated samples
      • 4.2 Influence of the variation of Cu2+ precursor concentration on the CuFe2O4-based nanocomposite properties
      • 4.3 Influence of the variation of Fe3+ precursor concentration on the CuFe2O4-based nanocomposite properties
    • Conclusions
    • References
  • 3
    • Magnetic Nanomaterials for Separations
    • 1. Introduction
    • 2. Synthesis of MNPs
      • 2.1 Physical methods used for the synthesis of MNPs
      • 2.1.1 Mechanical milling method
      • 2.1.2 Vapour deposition method
      • 2.1.3 Electrical explosion of wires (EEW) method
      • 2.2 Chemical methods used for the synthesis of MNPs
      • 2.2.1 Co-precipitation method
      • 2.2.2 Thermal decomposition method
      • 2.2.3 Hydrothermal method
      • 2.2.4 Microemulsion method
    • 3. Modification or functionalization of magnetic nanoparticles
    • 4. What is separation?
    • 5. Role of magnetic nanomaterials in separation
      • 5.1 Separation by silica modified magnetic nanomaterials
      • 5.2 Separation by alumina modified magnetic nanomaterials
      • 5.3 Separation by zirconium modified magnetic nanomaterials
      • 5.4 Separation by silver modified magnetic nanomaterials
      • 5.5 Separation by gold modified magnetic nanomaterials
      • 5.6 Separation by manganese oxide modified magnetic nanomaterials
      • 5.7 Separation by titanium oxide and zinc oxide modified magnetic nanomaterials
      • 5.8 Separation by carbon modified magnetic nanomaterials
      • 5.9 Separation by surfactants modified magnetic nanomaterials
      • 5.10 Separation by polymers modified magnetic nanomaterials
      • 5.11 Separation by magnetic molecularly imprinted polymer (MMIP)
    • Conclusion
    • References
  • 4
    • State of the Art, Challenges and Future Prospects in Magnetochemistry
    • 1. Introduction
    • 2. Magnetochemistry and magnetic nanoparticles
      • 2.1 Applications of magnetic nanoparticles
    • 3. Factors affecting the main characteristics of magnetic nanoparticles
      • 3.1 Size effect
      • 3.2 Effect of structure and shape
      • 3.3 Effect of composition
    • 4. Synthesis strategies of magnetic nanoparticles
      • 4.1 Electron bunch lithography
      • 4.2 Gas-phase deposition
      • 4.3 Coprecipitation
      • 4.4 Microemulsions
      • 4.5 Hydrothermal synthesis
      • 4.6 Sol-gel reactions
      • 4.7 Polyols
      • 4.8 Flow injection synthesis
      • 4.9 Electrochemical methods
      • 4.10 Aerosol / steam methods
      • 4.11 Sonolysis
    • 5. Stabilization / protection of magnetic nanoparticles
    • Conclusions and Recommendations
    • References
  • 5
    • Magnetic Nanoparticles in Analytical Chemistry
    • 1. Introduction
    • 2. Synthesis of MNPs
      • 2.1 Co-precipitation
      • 2.2 Hydro-solvothermal
      • 2.3 High-temperature reactions
      • 2.4 Sonochemical
    • 3. Structure and functionalization of MNPs
    • 4. Use of MNPs in analytical chemistry
      • 4.1 Pre-concentration, capture and separation
      • 4.2 Sensors
      • 4.2.1 Electrochemical
      • 4.2.2 Microfluidic
      • 4.2.3 Magnetic resonance imaging techniques
      • 4.2.4 Others
    • References
  • 6
    • Magnetic Nanomaterials for Fuel Cells
    • 1. Introduction
    • 2. Magnetic nanomaterials
      • 2.1 Monometallic magnetic nanomaterials
      • 2.2 Bimetallic magnetic nanomaterials
      • 2.3 Chemical design and synthesis
      • 2.3.1 Thermal decomposition
      • 2.3.2 Micro-emulsion method
      • 2.3.3 Sol-gel method
      • 2.3.4 Hydrothermal method
      • 2.3.5 Solvothermal method
      • 2.4 Iron oxide magnetic nanoparticles
      • 2.5 Other magnetic nanoparticles
    • 3. Important considerations and limitation
    • 4. Working principle of magnetic nanomaterials in fuel cells application
      • 4.1 Electrochemical measurements of MNMs
    • 5. Markets with Research and Development
    • Conclusion
    • References
  • 7
    • Magnetic Nanomaterials for Hydrogen Storage
    • 1. Introduction
    • 2. Monocomponent magnetic nanomaterials
      • 2.1 Metal magnetic nanomaterials
      • 2.2 Metallic Oxides Magnetic Nanomaterials
      • 2.3 Metal Alloy Magnetic Nanomaterials
      • 2.4 Metal Carbides
    • 3. Multicomponent Magnetic Nanomaterials
    • 4. Use of Magnetic Nanomaterials in Hydrogen Storage
    • Conclusions and Outlook
    • References
  • 8
    • Magnetic Nanomaterials for Supercapacitors
    • 1. Introduction
    • 2. Magnetic NPs
      • 2.1 Synthesis of attractive NPs
      • 2.1.1 Co-precipitation
      • 2.1.2 Micro-emulsion
      • 2.1.3 Thermal decay
      • 2.1.4 Hydrothermal strategy
      • 2.4.4 Magnetic separation
      • 2.2 Functionalization and utilization of attractive NPs
    • 3. Some remarkable properties of Iron oxide nano particles
      • 3.1 Iron oxide nanoparticles
      • 3.2 Al doped ferrite nanomaterials
      • 3.3 Magnetite/polypyrrole nanocomposite capacitors
      • 3.4 Cobalt based ferrite materials
    • Conclusions
    • References
  • 9
    • Iron Oxide based Magnetic Nanomaterials for Biomedical Applications
    • 1. Introduction
      • 1.1 Role of iron oxide nanoparticles
      • 1.2 Synthesis methods
      • 1.2.1 Co-precipitation
      • 1.2.2 Microemulsion
      • 1.2.3 Sol-gel
      • 1.3 Surface modifications
    • 2. Applications of MNPs
      • 2.1 Hyperthermia
      • 2.1.1 Delivery of SPIONs to the target site
      • 2.1.2 Nanomaterials used for hyperthermia
      • 2.2 Tissue engineering
      • 2.3 Medical imaging
      • 2.4 Drug delivery
    • Conclusions and future perspectives
    • References
  • 10
    • Magnetic Nanomaterials for Spintronics
    • 1. Introduction
    • 2. Different structural magnetic nanomaterials for spintronics applications
      • 2.1. GaP:Mn nanowires
      • 2.2. Chalcopyrite CdGeP2:Mn
      • 2.3. Wurtzite GaN:Mn
      • 2.4. Cobalt-doped Zinc oxide nanowires
      • 2.5. Cobalt-doped Titaniumoxide nanocrystals
      • 2.6. Cobalt-doped Cerium oxide nanoparticles
    • Conclusions
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Статистика использования

stat Количество обращений: 0
За последние 30 дней: 0
Подробная статистика