FinUniversity Electronic Library

     

Details

Materials research foundations ;.
Photoelectrochemical water splitting: materials and applications. — v. 71. / edited by Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri. — 1 online resource: illustrations. — (Materials research foundations). — <URL:http://elib.fa.ru/ebsco/2386714.pdf>.

Record create date: 3/7/2020

Subject: Photoelectrochemistry.; Water — Electrolysis.; Photoelectrochemistry; Water — Electrolysis

Collections: EBSCO

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Annotation

The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials.

Document access rights

Network User group Action
Finuniversity Local Network All Read Print Download
Internet Readers Read Print
-> Internet Anonymous

Table of Contents

  • front-matter
    • Table of Contents
    • Preface
  • 1
    • Transition Metal Chalcogenides for Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. Typical structures of transition metal chalcogenides
    • 3. Binary chalcogenides applied to photoelectrochemical water splitting
    • 4. Transition metal-based ternary and multinary chalcogenides for photoelectrochemical water splitting
      • 4.1 P-type copper-based chalcogenides
      • 4.2. Silver-based chalcogenides for water splitting
    • Conclusions
    • References
  • 2
    • Selection of Materials and Cell Design for Photoelectrochemical Decomposition of Water
    • 1. Introduction
    • 2. Principle and theory of water decomposition
    • 3. Challenges in designing of a photoelectrochemical cell
    • 4. Design configurations of PEC
      • 4.1 Type 1 photo anodes
      • 4.2 Type II heterojunction photomaterials
      • 4.3 Type III wired type PEC tandem cells
      • 4.4 Type IV wireless type PEC
      • 4.5 Type V PV−EC systems
    • Conclusions
    • References
  • 3
    • Interfacial Layer/Overlayer Effects in Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. PEC cell photoelectrode: Required characteristics and recent trends
    • 3. Interface layering/over-layering: An effective strategy
    • 4. Interface layering/over-layering of metal oxide semiconductors
      • 4.1 Interface layering with BiVO4
      • 4.2 Interface layering with CuO/Cu2O
      • 4.3 Interface layering with hematite (α-Fe2O3)
      • 4.4 Interface layering with WO3
      • 4.5 Interface layering with TiO2
    • 5. Interface layering with carbon materials
    • 6. Interface layering with low-cost non-metallic semiconductors
    • 7. Interface layering/integration with metal nanoparticles
    • Conclusion and future directions
    • Acknowledgements
    • References
  • 4
    • Narrow Bandgap Semiconductors for Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. Narrow band gap materials as a strategy to improve photoresponse of the material
      • 2.1 Bismuth sulfide (Bi2S3)
      • 2.2 CuO
      • 2.3 Fe2O3
      • 2.4 BiOI
    • Spray Pyrolysis
    • BiOI/BiOBr
    • BiOI/TiO2
    • Conclusion
    • References
  • 5
    • Ti-based Materials for Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. Basic principle of PEC water splitting
    • 3. Material selection for PEC water splitting
    • 4. TiO2 photocatalyst for PEC water splitting
    • 5. Tuning the photocatalytic of TiO2 into the visible light region
    • Conclusion
    • Acknowledgements
    • References
  • 6
    • BiVO4 Photoanodes for Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. Crystal and electronic band structure of BiVO4
    • 3. The band gap of monoclinic BiVO4
      • 3.1 BiVO4 photoanode band alignment at a liquid interface
    • 4. Influence of crystal facet
    • 5. Carrier dynamics in BiVO4
    • 6. Intrinsic defects/Oxygen vacancies in BiVO4
    • 7. Polarons in BiVO4
    • 8. Doping BiVO4
      • 8.1 W doping into BiVO4
      • 8.2 Mo doping into BiVO4
      • 8.3 Other dopants in BiVO4
      • 8.4 Lanthanide ion doping into BiVO4
      • 8.5 Codoping in BiVO4 (multiple ion doping)
    • 9. The side of illumination on BiVO4 photoanode
    • 10. Photo-charged BiVO4
    • 11. Hole blocking layer for BiVO4
    • 12. Catalyst coatings on BiVO4 photoanode
    • 13. Plasmon-induced resonant energy transfer
    • Conclusions and future perspective
    • References
  • 7
    • Noble Materials for Photoelectrochemical Water Splitting
    • 1. Introduction
    • 2. Fundamental properties of noble metals for photocatalytic activity
      • 2.1 Fundamentals of the Localized Surface Plasmon Resonance (LSPR)
      • 2.2 Schottky junction
    • 3. Photoelectrodes materials
      • 3.1 Titania (TiO2)
      • 3.2 Haematite (Fe2O3)
      • 3.3 Zinc oxide (ZnO)
    • 4. Fundamental role of noble materials in PEC water splitting
      • 4.1 Platinum (Pt)
      • 4.2 Gold (Au)
      • 4.3 Silver (Ag)
      • 4.4 Palladium (Pd)
      • 4.5 Copper (Cu)
    • 5. Noble bimetallic nanocomposites for PEC water splitting
      • 5.1 Au-Pt bimetallic nanocomposites
      • 5.2 Au-Pd bimetallic nanocomposites
      • 5.3 Au-Ag bimetallic nanocomposites
      • 5.4 Ag-Cu bimetallic nanocomposites
    • 6. A brief note on bimetallic non-noble NPs for photoelectrochemical (PEC) water splitting
    • Conclusion
    • References
  • back-matter
    • Keyword Index
    • About the Editors

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics