FinUniversity Electronic Library

     

Details

GRAVITATIONAL WAVES AND COSMOLOGY [[electronic resource].]. — AMSTERDAM: IOS PRESS, 2020. — 1 online resource — <URL:http://elib.fa.ru/ebsco/2632788.pdf>.

Record create date: 9/26/2020

Subject: Gravitational waves.; Cosmology.

Collections: EBSCO

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Document access rights

Network User group Action
Finuniversity Local Network All Read Print Download
Internet Readers Read Print
-> Internet Anonymous

Table of Contents

  • Title Page
  • Contents
  • Preface
  • Course group shot
  • F. Fidecaro - Principles of gravitational wave detection
    • 1. The detection of gravitational waves
      • 1.1. Gravitational waves
      • 1.2. Effect on a single mass
      • 1.3. Effect on a pair of masses
      • 1.4. The laboratory frame
    • 2. Essential properties
      • 2.1. Distance ladder
      • 2.2. Expected amplitude
      • 2.3. Compact objects
      • 2.4. Single compact objects
      • 2.5. Supernovae
      • 2.6. The indirect evidence for gravitational radiation: PSR 1913+16
    • 3. Signals and noise
      • 3.1. Noise power spectrum
      • 3.2. Power spectra in practice
      • 3.3. Power spectrum in digitized signals
      • 3.4. Signal and noise
      • 3.5. Optimal filtering
    • 4. Primary noise sources in gravitational wave interferometers
    • 5. Position noise
      • 5.1. Seismic noise
      • 5.2. Seismic attenuation
      • 5.3. The Virgo Superattenuator
      • 5.4. Thermal noise
      • 5.5. Fluctuation-Dissipation theorem
      • 5.6. Thermal noise mitigation
      • 5.7. Newtonian noise
    • 6. Measurement noise
      • 6.1. Michelson-Morley interferometry
      • 6.2. Fabry-Perot cavities
      • 6.3. Power recycling
      • 6.4. Standard quantum limit
    • 7. Noise curve
    • 8. Ending remarks
  • Fulvio Ricci - A primer on a real gravitational wave detector
    • 1. Introduction
    • 2. The modulation
    • 3. The detection of the modulation component
    • 4. The readout of the output signal
    • 5. The Fabry-Perot cavities as Michelson arms
      • 5.1. More about the Fabry-Perot cavities
    • 6. How to keep the FP cavities in resonance
    • 7. The gravitational wave interferometer
    • 8. The interferometer control
    • 9. The sensitivity curve
    • 10. Thermal noise and cryogenics for future gravitational wave detectors
    • 11. Reduction of the readout noise
    • 12. Conclusion
  • Viviana Fafone - Optical aberrations in gravitational wave detectors and a look at the future
    • 1. Introduction
    • 2. Optical aberrations and their effects
    • 3. Correction of optical aberrations
    • 4. Mid and longer term perspective for ground-based detectors
  • Michela Mapelli - Astrophysics of stellar black holes
    • 1. Lesson learned from the first direct gravitational wave detections
    • 2. The formation of compact remnants from stellar evolution and supernova explosions
      • 2.1. Stellar winds and stellar evolution
      • 2.2. Supernovae (SNe)
      • 2.3. The mass of compact remnants
    • 3. Binaries of stellar black holes
      • 3.1. Mass transfer
      • 3.2. Common envelope (CE)
      • 3.3. Alternative evolution to CE
    • 4. The dynamics of black hole binaries
      • 4.1. Dynamically active environments
      • 4.2. Three-body encounters
      • 4.3. Exchanges
      • 4.4. Hardening
      • 4.5. Dynamical ejections
      • 4.6. Formation of intermediate-mass black holes by runaway collisions
      • 4.7. Formation of intermediate-mass black holes by repeated mergers
      • 4.8. Kozai-Lidov resonance
      • 4.9. Summary of dynamics and open issues
    • 5. Black hole binaries in cosmological context
      • 5.1. Analytic prescriptions
      • 5.2. Cosmological simulations
    • 6. Summary and outlook
  • Marica Branchesi - GW170817: the dawn of multi-messenger astronomy including gravitational waves
    • 1. The first gravitational-wave observation of the coalescence of a binary system of neutron stars
    • 2. Discovery of the high-energy counterpart
    • 3. The multi-wavelength electromagnetic follow-up campaign
  • Douglas Scott - The standard model of cosmology: A skeptic's guide
    • 1. What is the standard model of cosmology?
    • 2. The parameters and assumptions of the SMC
    • 3. The numbers that describe the Universe
    • 4. Information in the SMC
    • 5. The venerableness of the SMC
    • 6. Tensions
    • 7. Anomalies
    • 8. The nature of skepticism
    • 9. Beyond the SMC
    • 10. Conclusions
  • J. Martin - The theory of inflation
    • 1. Introduction
    • 2. Why inflation?
      • 2.1. The pre-inflationary standard model
      • 2.2. The puzzles of the standard model
      • 2.3. Basics of inflation
    • 3. Inflationary cosmological perturbations
    • 4. Extensions
    • 5. Inflation and CMB observations
    • 6. Conclusions
  • M. Celoria and S. Matarrese - Primordial Non-Gaussianity
    • 1. Introduction
      • 1.1. Historical outline
    • 2. Non-Gaussianity in the initial conditions
      • 2.1. Non-Gaussianity and higher-order statistics
      • 2.2. Bispectrum of a self-interacting scalar field in de Sitter space
      • 2.3. Shapes of non-Gaussianity from inflation
      • 2.4. The role of fNL and the detection of primordial non-Gaussianity
    • 3. Non-Gaussianity and Cosmic Microwave Background
      • 3.1. Planck results on primordial non-Gaussianity
      • 3.2. Implications for inflation
      • 3.3. Primordial non-Gaussianity with CMB spectral distorsions
    • 4. Primordial Non-Gaussianity and the Large-Scale Structure
      • 4.1. Non-Gaussianity and halo mass function
      • 4.2. Halo bias in NG models
      • 4.3. PNG with LSS: the galaxy bispectrum
    • 5. Controversial issues on non-Gaussianity
      • 5.1. Single-field consistency relation
      • 5.2. Non-Gaussian fNL-like terms generated by non-linear general relativistic evolution
    • 6. Concluding remarks
  • Wayne Hu - CMB polarization theory
    • 1. Introduction
    • 2. Sources of CMB polarization
    • 3. Acoustic source
    • 4. Inflation source
    • 5. Reionization source
    • 6. Lensing distortion
    • 7. Discussion
  • C. Burigana and T. Trombetti on behalf of the Planck Collaboration - The legacy of Planck
    • 1. Introduction
    • 2. The Planck mission
    • 3. Control of systematic effects
    • 4. Astrophysical foregrounds
      • 4.1. Catalogs of sources and clusters of galaxies
      • 4.2. Galactic diffuse components
    • 5. Main implications for cosmology and fundamental physics
      • 5.1. Cosmological results
      • 5.2. Fundamental physics results
      • 5.3. Constraints on primordial B-modes
    • 6. Towards future CMB missions
      • 6.1. CMB mission proposals at degree resolution
      • 6.2. CMB mission proposals at sub-degree resolution
  • Jens Chluba - Future steps in cosmology using spectral distortions of the cosmic microwave background
    • 1. Overview and motivation
      • 1.1. Why are spectral distortions so interesting today
      • 1.2. Overview and goal of the lecture
    • 2. The physics of CMB spectral distortions
      • 2.1. Simple blackbody relations
      • 2.2. Photon energy and number density
      • 2.3. What we need to do to change the blackbody temperature
      • 2.4. What is the thermalization problem all about
      • 2.5. General conditions relevant to the thermalization problem
      • 2.6. Photon Boltzmann equation for average spectrum
      • 2.7. Collision term for Compton scattering
        • 2.7.1. Comptonization efficiency
      • 2.8. Bremsstrahlung and double Compton emission
    • 3. Types of spectral distortions from energy release
      • 3.1. Scattering of CMB photons in the limit of small y-parameter
        • 3.1.1. Thermal Sunyaev-Zeldovich effect
      • 3.2. Chemical potential or mu-distortion
        • 3.2.1. Compton equilibrium solution
        • 3.2.2. Definition of the mu-distortion
        • 3.2.3. But how do we define the distortion?
      • 3.3. Simple description of primordial distortions
        • 3.3.1. Inclusion of photon production in the mu-era
        • 3.3.2. The importance of double Compton emission
      • 3.4. Modeling the transition between mu and y
      • 3.5. Distortions from photon injection
    • 4. CMB spectral distortion signals from various scenarios
      • 4.1. Reionization and structure formation
      • 4.2. Damping of primordial small-scale perturbations
      • 4.3. Adiabatic cooling for baryons
      • 4.4. The cosmological recombination radiation
      • 4.5. Dark matter annihilation
      • 4.6. Decaying particle scenarios
      • 4.7. Anisotropic CMB distortions
    • 5. Conclusions
  • Will J. Percival - Recent developments in the analysis of galaxy surveys
    • 1. Introduction
    • 2. The overdensity field
    • 3. Line-of-sight assumptions
    • 4. Multipole moments
    • 5. Correlation function estimators in the local plane-parallel formalism
    • 6. Power spectrum estimators in the global plane-parallel formalism
    • 7. Power spectrum estimators in the local plane-parallel formalism
    • 8. Grid assignment, aliasing and interlacing
    • 9. Linking Fourier and Fourier-Bessel bases
    • 10. Window convolution of models
    • 11. Power spectrum integral constraint
    • 12. Covariance matrix under Gaussian assumption
    • 13. 1-point systematics
    • 14. 2-point systematics
    • 15. Binning in redshift and redshift-dependent weighting
    • 16. Reconstruction
    • 17. Conclusions
  • David F. Mota - Nonlinear astrophysical probes of screened modified gravity
    • 1. Introduction
    • 2. Theoretical models
      • 2.1. Chameleon-f(R) gravity
      • 2.2. Symmetron
    • 3. Efficiency of screening mechanisms
      • 3.1. Solar System constraints
      • 3.2. Simulations
      • 3.3. Results
    • 4. Distribution of fifth force in dark matter haloes
    • 5. The matter and the velocity power spectra
    • 6. The dynamical and lensing masses
    • 7. Thermal versus lensing mass measurements
      • 7.1. Including the non-thermal pressure component
    • 8. Modelling void abundance in modified gravity
      • 8.1. Linear power spectrum
      • 8.2. Spherical collapse
        • 8.2.1. Spherical expansion
      • 8.3. Void abundance function
      • 8.4. Voids from simulations
      • 8.5. Results
        • 8.5.1. Fitting beta and D from simulations
        • 8.5.2. Constraining modified gravity
        • 8.5.3. Voids in galaxy samples
    • 9. Conclusions and perspectives
  • List of participants

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics