FinUniversity Electronic Library

     

Details

International School of Physics "Enrico Fermi". Nanoscale quantum optics: proceedings of the International School of Physics "Enrico Fermi" course 204, Varenna on Lake Como, Villa Monastero, 23-28 July 2018 = Ottica quantistica a livello nanoscopico : rendiconti della Scuola internazionale di fisica "Enrico Fermi" CCIV corso, Varenna sul Lago di Como, Villa Monatero, 23-28 Luglio 2018 / edited by M. Agio, I D'Amico, and R. Zia, directors of the course and C. Toninelli. — Amsterdam: IOS Press, 2020. — 1 online resource : illustrations. — (Proceedings of the International School of Physics Enrico Fermi). — In English, includes parallel title page in Italian. — <URL:http://elib.fa.ru/ebsco/2664477.pdf>.

Record create date: 11/4/2020

Subject: Quantum optics — Congresses.; Nanoscience — Congresses.; Quantum optics.

Collections: EBSCO

Allowed Actions:

Action 'Read' will be available if you login or access site from another network Action 'Download' will be available if you login or access site from another network

Group: Anonymous

Network: Internet

Document access rights

Network User group Action
Finuniversity Local Network All Read Print Download
Internet Readers Read Print
-> Internet Anonymous

Table of Contents

  • Title Page
  • Contents
  • M. Agio, I. D'Amico, R. Zia and C. Toninelli - Preface
  • Course group shot
  • Irene D'Amico - Basic concepts for quantum optics and quantum technologies
    • 1. Introduction
    • 2. Quantization of the electromagnetic field and Fock states
      • 2.1. Classical field, plane wave
      • 2.2. Generic classical field
      • 2.3. Quantization of the electromagnetic field
      • 2.4. Fock states and their properties
    • 3. Coherent states
      • 3.1. Coherence in classical light
      • 3.2. Quadrature operators and Fock states in the quadrature space
      • 3.3. Coherent states and their properties
      • 3.4. Coherent states and the displacement operator
    • 4. Quadrature operators in quantum optics
      • 4.1. Examples of visualization of quantum states of light
      • 4.2. Squeezed states
    • 5. Elementary building blocks for quantum technologies: quantum bits and quantum gates
    • 6. Quantum entanglement
      • 6.1. Entangled and unentangled states
      • 6.2. Entanglement in systems with multiple degrees of freedom
      • 6.3. Entanglement and Bell's inequality
    • 7. "Spin chains" as eclectic quantum buses
    • 8. The density operator
      • 8.1. Why do we need a density operator?
      • 8.2. Ensembles of quantum states: mixed and pure states
      • 8.3. Characterization of a density operator
      • 8.4. Separable mixed states
  • Nathalie P. de Leon - Materials for quantum nanophotonics
    • 1. Desiderata for applications in quantum nano-optics
      • 1.1. Single-photon sources
      • 1.2. Using quantum systems to control light
      • 1.3. Quantum networks
      • 1.4. Enhanced collection effciency from a quantum system
    • 2. Examples of physical systems
      • 2.1. Quantum dots
      • 2.2. Shallow donors
      • 2.3. Defects and impurities
    • 3. Optical coherence and interactions with the environment
    • 4. Spin coherence and interactions with the environment
      • 4.1. Dephasing
      • 4.2. Decoherence
      • 4.3. Spin-lattice relaxation
    • 5. Prospects for quantum technologies
  • Rahul Trivedi, Daniil Lukin and Jelena Vuckovic - Quantum optics and nonclassical light generation
    • 1. Quantum description of electromagnetic fields
      • 1.1. Lossless cavities: Systems with discrete modes
      • 1.2. Single-mode waveguide: System with a continuum of modes
      • 1.3. Model for lossy cavities
    • 2. Light-matter interaction
      • 2.1. Interaction Hamiltonian
      • 2.2. Two-level systems interacting with an optical continuum
      • 2.3. Cavity quantum electrodynamics
    • 3. Single-photon sources
      • 3.1. Characterizing the quality of single-photon sources
      • 3.2. Two-time correlation measurements
      • 3.3. Solid-state implementation of single-photon sources
        • 3.3.1. Quantum dots
        • 3.3.2. Color centers
    • AppendixA. Lindblad master equation
    • AppendixB. Mollow transformation
    • AppendixC. Decay of a two-level system into a lossy cavity mode
    • AppendixD. Analysis of interferometers
      • AppendixD.1. Linear optical elements in loss channels
      • AppendixD.2. Analysis of Hanbury-Brown Twiss and Hong-Ou Mandel interferometers
  • M. Atature - Creating quantum correlations between quantum-dot spins
    • 1. Proximity and quantum correlations
    • 2. Optically active semiconductor quantum dots
      • 2.1. Essential properties
      • 2.2. QD spin devices
    • 3. Measurement-based creation of quantum correlations
      • 3.1. Entanglement concept
      • 3.2. Experimental realisation
    • 4. Outlook
  • E. Polino, N. Spagnolo, F. Sciarrino, G. Corrielli, A. Crespi and R. Osellame - Platforms for telecom entangled photon sources
    • 1. Introduction
    • 2. Platforms for telecom entangled photons sources
      • 2.1. SPDC sources
      • 2.2. SFWM sources
      • 2.3. Other sources
    • 3. Femtosecond Laser Writing Technique for integrated source of telecom entangled states
      • 3.1. FLW technique
      • 3.2. FLW for fully integrated source of telecom entangled states
    • 4. Conclusions
  • Lee C. Bassett - Quantum optics with single spins
    • 1. Introduction
    • 2. Electronic structure of the diamond nitrogen-vacancy center
      • 2.1. The electronic Hamiltonian
      • 2.2. Low- and high-strain regimes
    • 3. Coherent light-matter coupling
      • 3.1. The Jaynes-Cummings Hamiltonian
      • 3.2. The Faraday and optical Stark effects
      • 3.3. Discussion and implications
    • 4. All-optical coherent spin control
      • 4.1. Dark states and coherent population trapping
      • 4.2. Forming a Lambda system from the NV center
      • 4.3. All-optical initialization, control, and readout
    • 5. Ultrafast control
      • 5.1. Quantum control with ultrafast optical pulses
      • 5.2. Applications
    • 6. Conclusions and future directions
  • Friedemann Reinhard - Nanoscale sensing and quantum coherence
    • 1. Introduction
    • 2. Single molecules and spins as scanning probes
    • 3. Sensing by quantum coherence -reaching the fundamental limit of sensitivity
      • 3.1. Quantum coherence as a sensor
      • 3.2. Creating and reading out quantum coherence -the Ramsey protocol
      • 3.3. Decoherence and the fundamental limit to sensitivity
    • 4. Sensing by dynamical decoupling -the hidden revolution
    • 5. Outlook -prospects and hopes after one decade
  • Jirawat Tangpanitanon and Dimitris G. Angelakis - Many-body physics and quantum simulations with strongly interacting photons
    • 1. Introduction
      • 1.1. Computer simulation
      • 1.2. Quantum simulation
      • 1.3. Platforms for quantum simulation
        • 1.3.1. Cold neutral atoms in optical lattices
        • 1.3.2. Trapped ions
        • 1.3.3. Solid-state systems
        • 1.3.4. Interacting photons
        • 1.3.5. Conclusions
    • 2. Quantum phase transitions
      • 2.1. Example: the Mott-to-superfluid phase transition
      • 2.2. The mean-field phase diagram
    • 3. Quantum many-body phases of light
      • 3.1. Light-matter interaction
        • 3.1.1. Field quantization: mode of a simple optical resonator
        • 3.1.2. The Jaynes-Cummings interaction
        • 3.1.3. Eigenstates of the Jaynes-Cummings model
        • 3.1.4. Early experimental realizations of strong light-matter coupling
        • 3.1.5. Photon blockade effect
        • 3.1.6. Quantum nonlinear optics with atomic ensembles
      • 3.2. Mott-to-superfluid transition of light in coupled resonator arrays
        • 3.2.1. The mean-field phase diagram
        • 3.2.2. Existing works on equilibrium many-body phases of interacting photons
        • 3.2.3. State-of-the-art experiments
      • 3.3. Driven-dissipative many-body phases of interacting photons
    • 4. Strongly interacting photons from superconducting circuits
      • 4.1. Microwave photons from an LC circuit
      • 4.2. A Kerr resonator from a transmon qubit
      • 4.3. Different types of superconducting qubits
      • 4.4. Nonlinear lattices from arrays of coupled transmon qubits
        • 4.4.1. The Bose-Hubbard model
        • 4.4.2. The Jaynes-Cummings Hubbard model
    • 5. Conclusions and future aspects
  • Ewold Verhagen - Nano-optomechanics
    • 1. Introduction: coupling light and motion
      • 1.1. The canonical cavity optomechanical resonator
    • 2. Quantum measurements of motion with light
      • 2.1. Measuring motion with a cavity
      • 2.2. Mechanical frequency response
      • 2.3. Mechanical fluctuation spectra and sidebands
      • 2.4. Imprecision and backaction; the Standard Quantum Limit
    • 3. A quantum optical description of cavity optomechanics
      • 3.1. The optomechanical Hamiltonian
      • 3.2. The linearized Hamiltonian
    • 4. Optomechanical cooling and state transfer
      • 4.1. The resolved sideband regime
      • 4.2. Cooling rate and engineered reservoir
    • 5. Controlling photons and phonons
      • 5.1. Optomechanically-induced transparency and cooperativity
      • 5.2. Beyond single-mode interactions
      • 5.3. Beyond reciprocity
      • 5.4. Beyond linearity
    • 6. Conclusions
  • M. Colautti, G. Mazzamuto, F. S. Cataliotti, P. Lombardi, S. Pazzagli, A. P. Ovvyan, N. Gruhler, W. H. P. Pernice, G. Kewes, O. Neitzke, O. Benson and C. Toninelli - Photostable molecules on chip: a scalable approach to photonic quantum technologies
    • 1. Introduction
    • 2. Evanescent coupling of single molecules to a nearby dielectric waveguide
      • 2.1. Single-molecule quantum emitters
      • 2.2. Design and fabrication of the hybrid photonic chip
      • 2.3. Experimental results
    • 3. Conclusions
  • S. Hernandez-Gomez, F. Poggiali, N. Fabbri and P. Cappellaro - Environment spectroscopy with an NV center in diamond
    • 1. Introduction
    • 2. Effect of the environment on the NV center
      • 2.1. Spectroscopy method
      • 2.2. Predictive power of the characterization
    • 3. Conclusions
  • S. Tarrago Velez and Christophe Galland - Ultrafast photonic quantum correlations mediated by individual phonons
    • 1. Description
    • 2. Experimental method
    • 3. Results
    • 4. Conclusion
  • List of participants

Usage statistics

stat Access count: 0
Last 30 days: 0
Detailed usage statistics